. | . |
Artificial comet holds clues to the origin of life by Staff Writers Paris, France (SPX) Apr 12, 2016
Researchers have for the first time shown that ribose, a sugar that is one of the building blocks of genetic material in living organisms, may have formed in cometary ices. To obtain this result, scientists at the Institut de Chimie de Nice (CNRS/Universite Nice Sophia Antipolis) carried out a highly detailed analysis of an artificial comet created by their colleagues at the Institut d'Astrophysique Spatiale (CNRS/Universite Paris-Sud). Along with other teams, including one at the SOLEIL synchrotron, they propose the first realistic scenario for the formation of this key compound, which had never been detected in meteorites or cometary ices until now. Their findings, which shed new light on the emergence of life on Earth, are published in the journal Science dated 8 April 2016. The genetic material of all living organisms on Earth, as well as of viruses, is made up of nucleic acids, DNA and RNA. RNA, which is considered more primitive, is thought to have been one of the first molecules characteristic of life to appear on Earth. Scientists have long wondered about the origin of these biological compounds. Some of them believe that the Earth was seeded by comets or asteroids that contained the basic building blocks needed to form such molecules. And indeed several amino acids (the components of proteins) and nitrogenous bases (one of the components of nucleic acids) have already been found in meteorites, as well as in artificial comets produced in the laboratory. However, ribose, the other key component of RNA, had never yet been detected in extraterrestrial material or created in the laboratory under 'astrophysical' conditions. Now, by simulating the evolution of the interstellar ice making up comets, French research teams have successfully obtained ribose, a key step in understanding the origin of RNA-and therefore of life. As a first step, an artificial comet was produced at the Institut d'Astrophysique Spatiale. By placing a representative mixture of water (H2O), methanol (CH3OH) and ammonia (NH3) in a high vacuum chamber at - 200C, the astrophysicists simulated the formation of dust grains coated with ice, the raw material of comets. This material was irradiated with UV, as in the molecular clouds where these grains form. The sample was then warmed to room temperature, as in comets when they approach the Sun. Its composition was analyzed at the Institut de Chimie de Nice, optimizing an extremely sensitive and accurate method (multidimensional gas chromatography coupled with time-of-flight mass spectrometry). Several sugars were detected, including ribose. Their diversity and relative abundances suggest that they were formed from formaldehyde (a molecule found in space and on comets that forms in large quantities from methanol and water). Although the existence of ribose in real comets remains to be confirmed, this discovery completes the list of the molecular building blocks of life that can be formed in interstellar ice. It also lends further support to the theory that comets are the source of the organic molecules that made life possible on Earth, and perhaps elsewhere in the Universe. This study received financial support from the Agence Nationale de la Recherche and the CNES (Centre National d'Etudes Spatiales). Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs, Cornelia Meinert, Iuliia Myrgorodska, Pierre de Marcellus Thomas Buhse, Laurent Nahon, Soeren V. Hoffmann, Louis Le Sergeant d'Hendecourt, Uwe J. Meierhenrich. Science, 8 April 2016. DOI: 10.1126/science.aad8137
Related Links CNRS Life Beyond Earth Lands Beyond Beyond - extra solar planets - news and science
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |