. 24/7 Space News .
MILTECH
Army research uncovers law-like progression of weapons technologies
by Staff Writers
Aberdeen MD (SPX) Sep 23, 2019

A composite characteristic - weighted sum of logarithms of military systems' mass, speed, effective range, crew, rate of fire and projectile's kinetic energy - falls approximately on the same curve for broad range of system types. This occurs in spite of great differences in the systems' physical scale and underlying technologies, for over seven centuries.

Anticipating the technology and weapon systems of our future Army might not be entirely daunting, new Army research finds.

Trends in the progression of weapon systems from the early crossbowman to a musket to a military tank might help predict our future systems, according to a new study to be published in the Journal of Defense Modeling and Simulation, "Towards Universal Laws of Technology Evolution: Modeling Multi-century Advances in Mobile Direct Fire Systems."

"A number of law-like regularities are known to apply to both technological and naturally emerging complex systems," said Dr. Alexander Kott, author of the paper and a researcher at the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "Identifying these regularities may help long-range technology forecasting, which this paper illustrates by exploring two systems that might appear 30 years in the future."

Certain performance measures of technological systems often exhibit exponential - and sometimes superexponential - pattern of growth over time, Kott said. A particularly well-known example of such a regularity is Moore's Law, which states that a performance measure of a computer chip doubles approximately every two years. Many other technologies follow a similar law of exponential growth.

So-called allometric relations are another class of law-like regularities. Often, a universal relation exists between the scale of the organism and its various attributes, applicable across multiple organisms of widely different scales, Kott said.

For example, the Kleiber's Law states that for the vast majority of animals - from tiny mouse to huge elephant - the organism's metabolic rate scales approximately to the 3/4 power of the organism's mass, and the data for all such organisms fall on the same curve.

This research explores whether a single regularity of technological growth might apply to technologies of widely different scales, over a period of multiple centuries. Kott investigated a collection of diverse weapon systems he describes as the mobile direct-fire systems.

These include widely different families of technologies that span the period of 1300-2015 CE: Soldiers armed with weapons ranging from bows to assault rifles; foot artillery and horse artillery; towed anti-tank guns; self-propelled anti-tank and assault guns; and tanks.

Ultimately, this research finds that, indeed, a single, uncomplicated regularity describes the historical growth of this extremely broad collection of systems. Multiple, widely different families of weapon systems - from a bowman to a tank - fall approximately on the same curve, a simple function of time.

Unlike a conventional curve of exponential growth with time, this regularity also depends on the physical scale (specifically, mass) of the technological artifacts. This suggests a general model that unites allometric relations (such as the Kleiber's Law) and exponential growth relations (such as the Moore's Law).

"To my knowledge, no prior research describes a regularity in the temporal growth of technology that covers such widely different technologies, of widely different physical scales, and over such a long period of history," Kott said.

"However, such a regularity should be taken with a degree of caution. You cannot use it as a design guide. There is a lot more to a good system than a very parsimonious figure of performance we use in our model. Interpretations of the model require care."

This research suggests a possibility that even broader collections of technology families might evolve historically in accordance with what might be called universal laws of technological evolution, and provides related research questions for further investigation.

"What I find interesting about the findings of this paper," said Dr. Bruce West, the U.S. Army's chief mathematician, "is that from the evolutionary allometric perspective, this is the first set of empirical data that demonstrate the existence of a strongly time-dependent allometric coefficient. I anticipated such time dependency in my earlier papers, and here is a clear empirical confirmation."

Kott muses about this law-like but previously unrecognized trend.

"In hindsight," he said, "this multi-century, multi-scale regularity may not be all that surprising, but somehow nobody noticed this previously. Perhaps, the future is not a silent mystery. It speaks to us from the past, softly."


Related Links
US Army Research Laboratory
The latest in Military Technology for the 21st century at SpaceWar.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


MILTECH
New vibration sensor detects buried objects from moving vehicle
Washington DC (SPX) Sep 16, 2019
Detecting landmines can be a challenging and slow process. Detecting them from a moving vehicle would make the process more speedy, but at the expense of accuracy. At the Optical Society's (OSA) Laser Congress, held 29 September - 3 October 2019 in Vienna, Austria, researchers from the University of Mississippi, U.S.A., will report a new laser-based sensor that effectively detects buried objects even while the detector is in motion. This new device offers a significant improvement over existing te ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILTECH
Russia mulls equipping cutting-edge cosmonaut emergency survival kit with firearm

ARISS-US announces substantial gift toward the cost of the InterOperable Radio System

France pledges billions in fight to halt start-up drain

Testing and Training on the Boeing Starliner

MILTECH
Baikonur Cosmodrome Getting Ready for Last Launch of Russian Rocket With Ukrainian Parts

China to launch Third Long March 5 by year end

Roscosmos to Build Cheap Soyuz-2M Rocket for Commercial Satellites Launch Service

Engine Section for NASA's SLS Rocket Moved for Final Integration

MILTECH
Mars 2020 Spacecraft Comes Full Circle

NASA Research Gives New Insight into How Much Atmosphere Mars Lost

'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet

NASA engineers attach Mars Helicopter to Mars 2020 rover

MILTECH
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

MILTECH
First launch of UK's OneWeb satellites from Baikonur planned for Dec 19

Iridium and OneWeb to collaborate on a global satellite services offering

Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

MILTECH
L3Harris awarded nearly $12.8M for Eglin AN/FPS-85 radar work

US Space Module Genesis II Might Crash into Relict Russian Satellite

New global Space Safety Coalition established

Bolivia, with huge untapped reserves, gears up for soaring lithium demand

MILTECH
Researchers mix RNA and DNA to study how life's process began billions of years ago

First water detected on potentially 'habitable' planet

Water detected on an exoplanet located in its star's habitable zone

How to Spin a Disk Around Young Protostars

MILTECH
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.