![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Paris (ESA) Oct 19, 2022
The Ariane 6 launch pad at Europe's Spaceport in French Guiana now hosts for the first time a fully assembled example of ESA's new heavy-lift rocket, following the addition of an upper composite to the core stage and four boosters already in place. The upper composite - consisting of two half-fairings and a payload mock-up with the structural adapter needed to join it to the core stage - made the 10 km trip from the encapsulation building to launch pad on 12 October. Assembly, transfer and installation of an upper composite validates the Ariane 6 assembly process. Now, over the next several weeks, teams from ESA, ArianeGroup and French space agency CNES will make the mechanical, electrical and fluid connections which join this test model of the Ariane 64 configuration to the launch pad. With Ariane 6 fully integrated with the pad, so-called combined tests will validate the rocket, launch pad and shared electrical, fluid and mechanical systems as a complete system. The combined tests include tank filling and drainage operations which guarantee smooth-running of a launch sequence. Flight and control bench software will also be tested. Then, the launch pad will serve as a test bed for static hot-fire tests of the Vulcain 2.1 core stage engine, including aborted firings and long firings with disconnection. Vulcain 2.1 is derived from Ariane 5's Vulcain 2. Separately, static hot-fire tests of the Ariane 6 upper stage and its all-new Vinci engine began in October on a purpose-built test bed at Germany's DLR centre for engine and stage testing at Lampoldshausen. The reignitable Vinci engine allows Ariane 6 to deliver multiple payloads to different orbits on a single launch. After payload separation a final engine burn deorbits the upper stage so that it does not become a debris threat in space. ESA Director of Space Transportation Daniel Neuenschwander underscores the importance of Ariane 6 as a successor to Ariane 5, which for more than a quarter century has provided Europe with reliable access to space: "Innovation is the key to maintaining Europe's capacity to reach space with a fully independent launch system that is competitive and versatile." "With Ariane 6 we have Europe's best engineers developing new technologies and manufacturing methods to build on the success of one of the world's most reliable launch systems." On Wednesday 19 October 2022, a media briefing will be held in Paris at 1700 to detail Ariane 6 progress. Media can attend in person or by Webex; for details and registration here. The briefing will be broadcast to all interested viewers on ESA Web TV. Taking part will be ESA and its Ariane 6 partners: prime contractor ArianeGroup, launch operator Arianespace and French space agency CNES, which operates Europe's Spaceport and is delivering Ariane 6 ground infrastructure. Ariane 6 is a modular launch vehicle using either two or four P120C strap-on boosters, depending on mission requirements. The P120C engine does double duty, also serving as the first stage of ESA's new Vega-C rocket. Ariane 6 is project-managed and funded by ESA, which also acts as launch system architect. ArianeGroup is design authority and industrial prime contractor for the launcher system and CNES is prime contractor for the Ariane 6 launch base at Europe's Spaceport. Arianespace is the launch service provider of Ariane 6.
![]() ![]() First successful test of the Ariane 6 upper stage at DLR Lampoldshausen Lampoldshausen, Germany (SPX) Oct 07, 2022 The German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) site in Lampoldshausen successfully tested the upper stage of Ariane 6 for the first time on 5 October 2022. A hot-fire test is a highly demanding experiment; the aim is to simulate flight-representative conditions on the test stand. In this way, the interaction of all components for launch preparation and flight can be demonstrated, and the loads that a rocket stage must withstand on its way into space can be simulated. ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |