. | . |
Argonne scientists make vanadium into a useful catalyst for hydrogenation by Staff Writers Lemont, IL (SPX) May 31, 2017
Just as Cinderella turned from a poor teenager into a magnificent princess with the aid of a little magic, scientists at the U.S. Department of Energy's Argonne National Laboratory have transformed a common metal into a useful catalyst for a wide class of reactions, a role formerly reserved for expensive precious metals. In a new study, Argonne chemist Max Delferro boosted and analyzed the unprecedented catalytic activity of an element called vanadium for hydrogenation - a reaction that is used for making everything from vegetable oils to petrochemical products to vitamins. "Typically, catalyzing these reactions has typically required precious metals, like platinum, palladium or rhodium," Delferro said. Vanadium is what chemists call a first-row transition metal, which refers to its place on the periodic table. Like its neighbors titanium and chromium, vanadium is much more abundant and cheaper than the precious metals. Unfortunately, most vanadium on its own will not work for the hydrogenation process. To make the vanadium work required a three-step process. First, the vanadium has to be in its 3+ oxidation state, a very reactive but unstable state. Second, the vanadium had to be relatively dispersed on the surface - if the clumps of vanadium atoms were too big, they would cease to be as active. Last, the vanadium atoms had to be "low-coordinated", which means that there would be electronic room for the target molecules to bind. "Getting single-atom vanadium into this special configuration on metal oxide surfaces is not easy," Delferro said. "It requires the use of special synthetic techniques such as surface organometallic chemistry and atomic layer deposition. "However, if we can make vanadium or another abundant metal as catalytically active as the noble metals, we can create dramatic cost savings in these very common and commercially important catalytic processes." When Delferro and his team created the vanadium in this configuration, they saw a dramatic boost in catalytic activity. An article based on the study, "Isolated, Well-Defined Organovanadium(III) on Silica: Single-Site Catalyst for Hydrogenation of Alkenes and Alkynes," appeared online in Chemical Communications on May 9 in the special issue, "ChemComm's 2017 Emerging Investigators."
Tel Aviv, Israel (SPX) May 31, 2017 If you've shaken a snow globe, you've enjoyed watching its tiny particles slowly sink to the bottom. But do all small objects drift the same way and at the same pace? A new Tel Aviv University study finds the sedimentation of asymmetric objects in liquid is very different from that of symmetrical objects like spheres. The research solves a long-standing puzzle concerning the cause and the ... read more Related Links Argonne National Laboratory Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |