Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Argonne Scientists Reveal Secret Of Nanoparticle Crystallization In Real Time
by Staff Writers
Argonne IL (SPX) May 20, 2010


Assistant physicist Zhang Jiang (from left) examines a X-ray diffraction as physicist Jin Wang and nanoscientist Xiao-Min Lin prepare a sample at one of the Advanced Photon Source's beamlines. The Argonne scientists have examined nanoparticle crystallization in unprecedented detail using the high powered X-rays of the APS.

A collaboration between the Advanced Photon Source and Center for Nanoscale Materials at U.S. Department of Energy's (DOE) Argonne National Laboratory has "seen" the crystallization of nanoparticles in unprecedented detail.

"Nanoscience is a hot issue right now, and people are trying to create self-assembled nanoparticle arrays for data and memory storage," Argonne assistant physicist Zhang Jiang said. "In these devices, the degree of ordering is an important factor."

In order to call up a specific bit of data, it is ideal to store information on a two-dimensional crystal lattice with well-defined graphical coordinates. For example, every bit of information of a song saved on a hard drive must be stored at specific locations, so it can be retrieved later. However, in most cases, defects are inherent in nanoparticle crystal lattices.

"Defects in a lattice are like potholes on a road," Argonne physicist Jin Wang said. "When you're driving on the highway, you would like to know whether it is going to be a smooth ride or if you will have to zigzag in order to avoid a flat tire. Also, you want to know how the potholes form in the first place, so we can eliminate them."

Controlling the degree of ordering in nanoparticle arrays has been elusive. The number of nanoparticles a chemist can make in a small volume is astonishingly large.

"We can routinely produce 1014 particles in a few droplets of solution. That is more than the number of stars in the Milky Way Galaxy," Argonne nanoscientist Xiao-Min Lin. "To find conditions under which nanoparticles can self-assemble into a crystal lattice with a low number of defects is quite challenging."

Because nanoparticles are so small, it is not easy to see how ordered the lattice is during the self-assembly process. Electron microscopy can see individual nanoparticles, but the field of view is too small for scientists to get a "big picture" of what the ordering is like in macroscopic length scale. It also doesn't work for wet solutions.

"With local ordering, one cannot assume the same order exists throughout the whole structure; it's like seeing a section of road and assuming it is straight and well constructed all the way to the end," Wang said.

The same group of researchers at Argonne, together with their collaborators at the University of Chicago, discovered that under the right conditions, nanoparticles can float at a liquid-air interface of a drying liquid droplet and become self-organized.

This allows the two-dimensional crystallization process to occur over a much longer time scale. "You typically don't expect metallic particles to float. It is like throwing stones into a pond and expecting them to float on the surface," Lin said. "But in the nanoworld, things behave differently."

Using high-resolution X-ray scattering at the Advanced Photon Source (APS), Jiang and the others examined the crystallization process in unprecedented detail as it forms in real time.

They discovered that the nanoparticle arrays formed at the liquid-air interface can enter a regime of a highly crystalline phase defined in the classical two-dimensional crystal theory. Only when the solvent starts to dewet from the surface, do defects and disorder begin to appear.

"We can probe the entire macroscopic sample and monitor what's happening in real time," Jiang said. "This allows us to understand what parameters are important to control the self-assembly process."

With this level of understanding, the scientists hope that one day devices such as the iPod Nano can be made from nanoparticles.

A paper on this research was published in Nano Letters.

.


Related Links
UChicago Argonne, LLC
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Crystal Defect Shown To Be Key To Making Hollow Nanotubes
Madison WI (SPX) Apr 27, 2010
Scientists have no problem making a menagerie of nanometer-sized objects - wires, tubes, belts, and even tree-like structures. What they sometimes have been unable to do is explain precisely how those objects form in the vapor and liquid cauldrons in which they are made. Now a team led by University of Wisconsin-Madison chemist Song Jin, writing this week (April 23, 2010) in the journal Sc ... read more


NANO TECH
Einstein And Einstein A: A Study In Crater Morphology

NASA Invites Public To Take Virtual Walk On Moon

LRO Team Helps Track Laser Signals To Russian Rover Mirror

Lunar Polar Craters May Be Electrified

NANO TECH
Russia Announces Participants In Mars Flight Simulation Mission

Mars Rovers Set Surface Longevity Record

'We are trailblazers' say Mars Mission volunteers

Mars Contamination Dust-Up

NANO TECH
Immune System Compromised During Spaceflight

NASA picks 17 low gravity flight projects

Engineers Diagnosing Voyager 2 Data System

NASA To Fund Innovative Museum Exhibits And Planetarium Shows

NANO TECH
Seven More For Shenzhou

China Signs Up First Female Astronauts

China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

NANO TECH
Atlantis astronauts complete second spacewalk

Second Spacewalk Of STS-132 Complete

Astronauts And Cosmonauts Work Together To Install Russian Module

Reisman, Bowen Complete First STS-132 Spacewalk

NANO TECH
Sea Launch Files Plan Of Reorganization

Ariane 5's Liftoff With ASTRA 3B And COMSATBw-2 Is Set For May 21

Soyuz Ready For Integration Of Its Third Stage

NASA Uses 'Polka Dots' For Precision Measurements

NANO TECH
Planet discovered lacking methane

'This Planet Tastes Funny,' According To Spitzer

Small, Ground-Based Telescope Images Three Exoplanets

Wet Rocky Planets A Dime A Dozen In The Milky Way

NANO TECH
Adobe embracing Apple-favored online video format

ESA's Space Hazard Programme Profiled Online

Redefining Electrical Current Law With The Transistor Laser

E-readers, tablet computers set to take off: BCG survey




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement