. 24/7 Space News .
STELLAR CHEMISTRY
Are black holes made of dark energy
by Staff Writers
Manoa HI (SPX) Sep 11, 2019

Objects like Powehi, the recently imaged supermassive compact object at the center of galaxy M87, might actually be GEODEs. The Powehi GEODE, shown to scale, would be approximately 2/3 the radius of the dark region imaged by the Event Horizon Telescope. This is nearly the same size expected for a black hole. The region containing Dark Energy (green) is slightly larger than a black hole of the same mass. The properties of any crust (purple), if present, depend on the particular GEODE model.

Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.

Physicists usually assume that a cosmologically large system, such as the universe, is insensitive to details of the small systems contained within it. Kevin Croker, a postdoctoral research fellow in the Department of Physics and Astronomy, and Joel Weiner, a faculty member in the Department of Mathematics, have shown that this assumption can fail for the compact objects that remain after the collapse and explosion of very large stars.

"For 80 years, we've generally operated under the assumption that the universe, in broad strokes, was not affected by the particular details of any small region," said Croker. "It is now clear that general relativity can observably connect collapsed stars - regions the size of Honolulu - to the behavior of the universe as a whole, over a thousand billion billion times larger."

Croker and Weiner demonstrated that the growth rate of the universe can become sensitive to the averaged contribution of such compact objects. Likewise, the objects themselves can become linked to the growth of the universe, gaining or losing energy depending on the objects' compositions. This result is significant since it reveals unexpected connections between cosmological and compact object physics, which in turn leads to many new observational predictions.

One consequence of this study is that the growth rate of the universe provides information about what happens to stars at the end of their lives. Astronomers typically assume that large stars form black holes when they die, but this is not the only possible outcome.

In 1966, Erast Gliner, a young physicist at the Ioffe Physico-Technical Institute in Leningrad, proposed an alternative hypothesis that very large stars should collapse into what could now be called Generic Objects of Dark Energy (GEODEs). These appear to be black holes when viewed from the outside but, unlike black holes, they contain Dark Energy instead of a singularity.

In 1998, two independent teams of astronomers discovered that the expansion of the Universe is accelerating, consistent with the presence of a uniform contribution of Dark Energy. It was not recognized, however, that GEODEs could contribute in this way.

With the corrected formalism, Croker and Weiner showed that if a fraction of the oldest stars collapsed into GEODEs, instead of black holes, their averaged contribution today would naturally produce the required uniform Dark Energy.

The results of this study also apply to the colliding double star systems observable through gravitational waves by the LIGO-Virgo collaboration.

In 2016, LIGO announced the first observation of what appeared to be a colliding double black hole system. Such systems were expected to exist, but the pair of objects was unexpectedly heavy - roughly 5 times larger than the black hole masses predicted in computer simulations.

Using the corrected formalism, Croker and Weiner considered whether LIGO-Virgo is observing double GEODE collisions, instead of double black hole collisions. They found that GEODEs grow together with the universe during the time leading up to such collisions. When the collisions occur, the resulting GEODE masses become 4 to 8 times larger, in rough agreement with the LIGO-Virgo observations.

Croker and Weiner were careful to separate their theoretical result from observational support of a GEODE scenario, emphasizing that "black holes certainly aren't dead. What we have shown is that if GEODEs do exist, then they can easily give rise to observed phenomena that presently lack convincing explanations. We anticipate numerous other observational consequences of a GEODE scenario, including many ways to exclude it. We've barely begun to scratch the surface."

Research Report: "Implications of Symmetry and Pressure in Friedmann Cosmology"


Related Links
University of Hawaii at Manoa
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Lab-based dark energy experiment narrows search options for elusive force
London, UK (SPX) Aug 20, 2019
An experiment to test a popular theory of dark energy has found no evidence of new forces, placing strong constraints on related theories. Dark energy is the name given to an unknown force that is causing the universe to expand at an accelerating rate. Some physicists propose dark energy is a 'fifth' force that acts on matter, beyond the four already known - gravitational, electromagnetic, and the strong and weak nuclear forces. However, researchers think this fifth force may be 'screened' o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
JAXA spacecraft carries science, technology to the Space Station

Taking the next giant leaps

Malaysia Interested in Having Access to Russian Space Tech, Prime Minister Says

Voice-command ovens, robots for pets on show at Berlin's IFA tech fair

STELLAR CHEMISTRY
Putin reveals he offered to sell Trump Russia's hypersonic missiles

New salt-based propellant proven compatible in dual-mode rocket engines

Russia Launches Rokot Space Rocket to Orbit Military Satellite

Russian Space Agency to Test Modernized Fregat Upper Stage During Launch of Meteor Satellite in 2020

STELLAR CHEMISTRY
'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet

NASA Research Gives New Insight into How Much Atmosphere Mars Lost

NASA engineers attach Mars Helicopter to Mars 2020 rover

ESA Chief says discussed ExoMars 2020 launch with Roscosmos

STELLAR CHEMISTRY
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

STELLAR CHEMISTRY
Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

ESA re-routes satellite to avoid SpaceX collision risk

Cutting-edge Chinese satellite malfunctions after launch

STELLAR CHEMISTRY
Shaken but not stirred: Konnect satellite completes vibration tests

Suomi-NPP Satellite Instrument Restored After Radiation Damage

Seeking moments of disorder

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

STELLAR CHEMISTRY
How to Spin a Disk Around Young Protostars

Potassium Detected in an Exoplanet Atmosphere

Planetary collisions can drop the internal pressures in planets

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

STELLAR CHEMISTRY
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.