. 24/7 Space News .
SHAKE AND BLOW
Arctic Cyclones to intensify as climate warms, NASA study predicts
by Roberto Molar Candanosa for GSFC News
Greenbelt MD (SPX) Nov 16, 2022

An Arctic cyclone swirling over the Arctic Ocean on July 28, 2020. Arctic cyclones can cause sea ice to melt more rapidly. Their strong winds can break and churn the ice and pull warmer waters upwards that would otherwise be ice-capped. Depending on their location, temperature, and whether these storms drop snow or rain, they can also cause the ice to freeze or melt more rapidly. Image acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra and Aqua satellites.

Hurricanes threaten North American coastlines every year, and they appear to be intensifying as climate changes. Similar storms can also hit colder regions to the far north, and new research suggests they will intensify, too.

In findings published on Nov. 9, NASA scientists project spring Arctic cyclones will intensify by the end of this century because of sea ice loss and rapidly warming temperatures. Those conditions will lead to stronger storms that carry warmer air and more moisture into the Arctic.

"The cyclones will be much stronger in terms of pressure, wind speeds, and precipitation," said Dr. Chelsea Parker, who led the study. "Initially storms will drop more snowfall, but as air temperatures continue to rise and we cross above freezing temperatures, storms will be dropping rainfall, which is a really big change for the sea ice pack." Parker is a research scientist at the University of Maryland and NASA's Goddard Space Flight Center in Greenbelt, Maryland.

"More intense storms will be a hazard to shipping activities, oil and gas drilling and extraction, fishing, and Arctic ecosystems and biodiversity - that's where maritime weather forecasting is important but still challenging and difficult," Parker added. "It's an interesting push and pull because as the sea ice retreats, that opens up more area for these activities to take place, but it also might come with more dangerous weather."

Parker and colleagues analyzed computer simulations of nine cyclones that have hit the Arctic in the past decade. The warming and sea ice loss of recent decades did not appear to have a noticeable effect on the behavior of those spring storms, Parker noted.

To better understand future conditions, the scientists then simulated an Arctic with even warmer temperatures and less sea ice cover using results from the Coupled Model Intercomparison Projects. "When we add future projected climate change to the computer simulation," Parker said, "we see a really big response from the cyclones."

The team found that by the end of the century, cyclone wind speeds could increase up to 38 mph, depending on storm characteristics and the environmental conditions of the region. Parker noted that the peak intensity of such storms could be up to 30% longer, and precipitation will likely increase. If cyclones start to bring rainfall in the spring, sea ice may begin melting sooner and less of it will survive the summer melt season.

Such changes will enable the ocean to provide more energy to the atmosphere for deep convection, which increases the potential of storms to intensify and persist. Much like hurricanes in low and mid latitudes, Arctic cyclones use this energy like fuel in an engine. Storms in coming decades could travel farther north and reach areas of the Arctic typically left untouched. The changing weather could increase risks for Arctic ecosystems, communities, and commercial and industrial activities.

In order to provide some real-world grounding for their models, Parker and colleagues compared their model simulations with direct observations of a few Arctic storms collected in 2020 by the international MOSAiC expedition. By blending case studies from recent storms with high-resolution climate simulations, the new study is one of the first to show the direct response of cyclones to recent and future climate change.

"Typically we don't have much weather station data from the Arctic to be able to do that, so MOSAiC was a key piece for us because we were able to use actual measurements to validate our model," Parker said. "We're able to say that our current climate simulations of these cyclones are realistic and that we can trust what the model is doing."

Observations from space and the ground have shown that the Arctic is warming nearly four times faster than the rest of the planet. Scientists need more details about Arctic cyclones to form more accurate predictions of how the storms will influence sea ice that is already declining, as well as how the loss of ice will affect storm intensity. Gaining a better understanding of those interactions will help scientists studying how the rapid warming will affect the planet.


Related Links
Coupled Model Intercomparison Projects
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SHAKE AND BLOW
Hurricane Lisa menaces Central America
Belize City (AFP) Nov 2, 2022
The northern part of Central America was on high alert Wednesday for the passage of Hurricane Lisa, with warnings of devastating winds, downpours and flash floods also affecting Mexico's Yucatan peninsula. The US National Hurricane Center (NHC) has issued a hurricane warning for Honduras' Bay Islands, the coast of Belize and Mexico's Yucatan area stretching from Chetumal to Puerto Costa Maya. Lisa was moving westward in the Caribbean Sea at a speed of 24 kilometers (15 miles) per hour with maxim ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
SmartSat CRC and NASA team up to collaborate on astronaut emergency communications

S.S. Sally Ride delivers experiments to International Space Station

NASA Moon rocket launch delayed again, this time by storm

First geostationary navigation receiver from Beyond Gravity will be sent to orbit

SHAKE AND BLOW
NASA views images, confirms discovery of Shuttle Challenger artifact

Hurricane causes only minor damage to Artemis rocket

Twitter chaos deepens as key executives quit

Piece of Challenger space shuttle found off Florida coast

SHAKE AND BLOW
Losing the Rhythm - Sols 3648-3649

Perseverance activities at Amalik outcrop

MAVEN observes Martian light show caused by major solar storm

Earth's oldest stromatolites and the search for life on Mars

SHAKE AND BLOW
Next-generation rocket for astronauts expected in 2027

Astronauts enter China's Mengtian lab module for first time

China completes in-orbit maneuver to complete Tiangong space station assembly

China's Mengtian lab module docks with space station combination

SHAKE AND BLOW
Rocket Lab to supply satellite separation systems for Tranche 1 Transport Layer vendors

Rocket Lab to launch HawkEye 360's Cluster 6 satellites in December

MDA selects Rocket Lab to supply satellite operations control center for the Globalstar constellation

Astra laying off 16% of workforce, honing focus on development

SHAKE AND BLOW
With new heat treatment, 3D-printed metals can withstand extreme conditions

Turning concrete into a clean energy source

New quantum phase discovered for developing hybrid materials

Satellogic completes investment in Officina Stellare

SHAKE AND BLOW
Early planetary migration can explain missing planets

Oldest planetary debris in our galaxy found from new study

Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

SHAKE AND BLOW
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.