. 24/7 Space News .
STELLAR CHEMISTRY
Andromeda Galaxy's Bright X-ray Mystery Solved by NuSTAR
by Staff Writers
Pasadena CA (JPL) Mar 28, 2017


NASA's Nuclear Spectroscope Telescope Array, or NuSTAR, has identified a candidate pulsar in Andromeda - the nearest large galaxy to the Milky Way. This likely pulsar is brighter at high energies than the Andromeda galaxy's entire black hole population. Image courtesy NASA/JPL-Caltech/GSFC/JHU. For a larger version of this image please go here.

The Milky Way's closest neighbor [of comparable size], [the] Andromeda [galaxy], features a dominant source of high-energy X-ray emission, but its identity was mysterious until now. As reported in a new study, NASA's NuSTAR (Nuclear Spectroscopic Telescope Array) mission has pinpointed an object responsible for this high-energy radiation.

The object, called Swift J0042.6+4112, is a possible pulsar, the dense remnant of a dead star that is highly magnetized and spinning, researchers say. This interpretation is based on its emission in high-energy X-rays, which NuSTAR is uniquely capable of measuring. The object's spectrum is very similar to known pulsars in the Milky Way.

It is likely in a binary system, in which material from a stellar companion gets pulled onto the pulsar, spewing high-energy radiation as the material heats up. "We didn't know what it was until we looked at it with NuSTAR," said Mihoko Yukita, lead author of a study about the object, based at Johns Hopkins University in Baltimore. The study is published in the Astrophysical Journal.

This candidate pulsar is shown as a blue dot in a NuSTAR X-ray image of Andromeda (also called M31), where the color blue is chosen to represent the highest-energy X-rays. It appears brighter in high-energy X-rays than anything else in the galaxy.

The study brings together many different observations of the object from various spacecraft. In 2013, NASA's Swift satellite reported it as a high-energy source, but its classification was unknown, as there are many objects emitting low energy X-rays in the region. The lower-energy X-ray emission from the object turns out to be a source first identified in the 1970s by NASA's Einstein Observatory.

Other spacecraft, such as NASA's Chandra X-ray Observatory and ESA's XMM-Newton had also detected it. However, it wasn't until the new study by NuSTAR, aided by supporting Swift satellite data, that researchers realized it was the same object as this likely pulsar that dominates the high energy X-ray light of Andromeda.

Traditionally, astronomers have thought that actively feeding black holes, which are more massive than pulsars, usually dominate the high-energy X-ray light in galaxies. As gas spirals closer and closer to the black hole in a structure called an accretion disk, this material gets heated to extremely high temperatures and gives off high-energy radiation. This pulsar, which has a lower mass than any of Andromeda's black holes, is brighter at high energies than the galaxy's entire black hole population.

Even the supermassive black hole in the center of Andromeda does not have significant high-energy X-ray emission associated with it. It is unexpected that a single pulsar would instead be dominating the galaxy in high-energy X-ray light.

"NuSTAR has made us realize the general importance of pulsar systems as X-ray-emitting components of galaxies, and the possibility that the high energy X-ray light of Andromeda is dominated by a single pulsar system only adds to this emerging picture," said Ann Hornschemeier, co-author of the study and based at NASA's Goddard Space Flight Center, Greenbelt, Maryland.

Andromeda is a spiral galaxy slightly larger than the Milky Way. It resides 2.5 million light-years from our own galaxy, which is considered very close, given the broader scale of the universe. Stargazers can see Andromeda without a telescope on dark, clear nights.

"Since we can't get outside our galaxy and study it in an unbiased way, Andromeda is the closest thing we have to looking in a mirror," Hornschemeier said.

Research Report: "Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31," M. Yukita et al., 2017 Mar. 20, Astrophysical Journal

STELLAR CHEMISTRY
UV background could provide clues to missing galaxies
Durham UK (SPX) Mar 23, 2017
Astronomers have developed a way to detect the ultraviolet (UV) background of the universe, which could help explain why there are so few small galaxies in the cosmos. UV radiation is invisible but shows up as visible red light when it interacts with gas. An international team of researchers led by Durham University, UK, has now found a way to measure it using instruments on Earth. The res ... read more

Related Links
NuSTAR at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
X-Hab working seventh season of academic-aided innovation

Deep space gateway to open opportunities for distant destinations

NASA unveils new searchable multimedia library

NASA partnerships open the path from ground to space

STELLAR CHEMISTRY
Musk diving into minds while reaching for Mars

SpaceX launches first recycled rocket

The "Brain" of the Space Launch System RS-25 Engine Passes Critical Test

Spaceport America sets new record for student launched sounding rocket

STELLAR CHEMISTRY
Mars dust storm west of Opportunity starting to abate

Final two ExoMars landing sites chosen

Breaks observed in Curiosity rover wheel treads

Mars Volcano, Earth's Dinosaurs Went Extinct About the Same Time

STELLAR CHEMISTRY
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

STELLAR CHEMISTRY
Vietnam set to produce satellites by 2022

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Start-Ups at the Final Frontier

STELLAR CHEMISTRY
Researchers plan simulations of laser pulse-material interactions

'Ground Control' Arrives at Leicester University

Turning to Chemistry for New "Computing" Concepts

Researchers make flexible glass for tiny medical devices

STELLAR CHEMISTRY
Astronomers identify purest, most massive brown dwarf

Fledgling stars try to prevent their neighbors from birthing planets

Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

STELLAR CHEMISTRY
ANU leads public search for Planet X

Juno Spacecraft Set for Fifth Jupiter Flyby

Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.