. | . |
Ancients Stars Reveal Clues To Heavy Element Formation
Tucson - Nov. 14, 2000 Astronomers studying how elements heavier than iron were produced in the early Milky Way have identified a distinct series of epochs of galaxy-wide chemical formation. This evolutionary timeline, stretching from the Big Bang onward for several billion years, has the potential to serve as a cosmic "fingerprint manual" that could help astronomers categorize some of the quirky high-redshift galaxies seen in recent samples of the ancient universe, such as the Hubble Deep Field, and in deeper sky surveys to come. The research team looked at nearly 100 stars in the halo around the Milky Way, carefully selecting them to be relatively nearby, old and at least 10 to 100 times depleted of metals as compared to our Sun. Subsequent plots of elemental ratios in the stars revealed obvious trends over time that allow a larger chronology to be developed. "This is one of the largest studies yet of the abundances of heavy elements in galactic halo stars," says Debra Burris of Oklahoma City Community College, lead author of a paper scheduled for the November 20 issue of The Astrophysical Journal. "The behavior of the trends in abundances of these elements give us major clues about the conditions and populations of stars that existed early in the Milky Way's history." "Our results tell us that the history of the galaxy is tied very closely to the ways that stars change from generation to generation," explains co-author Catherine Pilachowski of the National Optical Astronomy Observatory (NOAO) in Tucson, AZ. "Certain chemical elements don't form until the stars that make them have had time to evolve. Therefore, we can read the history of star formation in the compositions of the oldest stars." "It's extremely difficult to accurately age-date a star. The chemical signatures give us an effective chronometer that we can use to probe the earliest epochs," says co-author Taft Armandroff of NOAO. "We probably would not have found these trends if we did not have such a large sample" The research team developed this evocative timeline to explain their observations:
The measurements used to develop these epochs were obtained with spectrographic instruments on the National Science Foundation's Mayall 4-meter telescope and Coude-Feed telescope operated by Kitt Peak National Observatory near Tucson. Because even the largest telescopes with the latest cutting-edge technology do not have the ability to resolve individual stars in ancient, high-red shift galaxies, detailed spectrographic measurements of the oldest stars in the Milky Way and other local group galaxies may be the only way we can study element formation in the very early universe. "The fossil structure of the Milky Way tells us about a time even earlier than the most distant galaxies yet discovered," Pilachowski notes. "But as we find galaxies at higher and higher redshifts, we will eventually be able to investigate galaxies similar to what the Milky Way must have looked like during these early epochs." In the future, team members may also study the relative motions of the same sample of stars to try and deduce whether they originate from any common groups or "streams" of stars. Such information could help inform debates about whether the Milky Way began as a loose cloud of gas that formed stars and then spun down into the spiral disk we know today, or whether a more clumpy structure analogous to dwarf galaxies came first. In this model, the dwarf-like galaxies were torn apart and then merged by tidal forces into the current disk. "Ultimately, we hope to answer questions like 'How long did the initial burst of star formation in the Galaxy last, 100 million years or five billion years?'" Armandroff explains. "There are a lot of interesting clues in the local population." Other co-authors of the paper are Christopher Sneden from McDonald Observatory and the University of Texas, John Cowan from the University of Oklahoma and Henry Roe from the University of California at Berkeley. Related Links NOAO Oklahoma City Community College SpaceDaily SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express
New England Can Catch Leonids Glimpses Nov 17 Huntsville - Nov. 8, 2000 Six teams of scientists led by NASA's Marshall Space Flight Center in Huntsville, Ala., will monitor the annual Leonids meteor shower this month when the phenomenon is brightest over the North American continent. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |