. 24/7 Space News .
TIME AND SPACE
Anchoring single atoms
by Staff Writers
Vienna, Austria (SPX) Sep 01, 2021

The atomic model shows a single indium atom (blue), which is anchored by a silicon atom (red) in a graphene carbon crystal lattice (black).

There is a dictum to "never change a running system". New methods can however be far superior to older ones. While to date chemical reactions are mainly accelerated by catalytic materials that comprise several hundreds of atoms, the use of single atoms could provide a new approach for catalysis.

An international research team, led by the TU Wien, Austria, has now developed a new method for anchoring individual atoms in a controlled and stable manner on surfaces. This is an important step towards single atom catalysis. The researchers working with Bernhard C. Bayer presented the new method in the scientific journal ACS Nano.

Single atoms to replace nanoparticles
Modern catalysts consist of nanoparticles and are therefore very small. However, considering their size on the atomic scale, they still comprise of hundreds of atoms, far larger than single atom catalysts. If it would become possible to accelerate chemical reactions with single atoms, this could open up new opportunities for catalysis. Single-atom catalysis can be more sustainable and energy efficient and it can also be more selective and achieve a higher turnover than traditional processes.

In the newly developed method, silicon atoms serve as "anchors" for single metal atoms. Silicon atoms themselves often occur as an impurity in the carbon support materials. To these silicon atoms now indium atoms are bound, which can act as single-atom catalysts. "The indium atoms bind selectively to the silicon anchors in the carbon crystal lattice," says Bernhard C. Bayer from the Institute for Materials Chemistry at the TU Wien.

"Thereby the individual indium atoms remain stable and anchored at their positions and do not clump together," continues Bayer, who led the research. "What makes the new technology particularly exciting is that the indium atoms are anchored in a self-assembled fashion, if the reaction conditions are right. This makes the process potentially scalable," adds Kenan Elibol from the University of Vienna and the Trinity College Dublin and first author of the study.

The process however also came with its challenges that the research team successfully met. Particularly the deposition of individual atoms on solid support surfaces is difficult. This is because single atoms normally move away quickly from their locations and clump together to form larger particles. The formation of such larger particles negates the advantages of single atom catalysis.

Further tests to follow
Using a high-resolution electron microscope at the University of Vienna, the research team could observe the mechanisms of the silicon-anchoring of the indium single atoms. "We were able to demonstrate, that the anchoring of the indium atoms depends on how the silicon anchors are bound into the carbon crystal lattice," says Toma Susi from the University of Vienna, who further elucidated the anchor structures by modern computational methods.

"Such controlled and room-temperature-stable anchoring of individual atoms on solid surfaces has not been reported yet and opens up exciting perspectives for catalytic applications in the fields of energy and environment," adds Dominik Eder from the TU Wien and an expert in catalysis.

Further experiments will follow so that the method developed by the Viennese researchers can also be industrially used: "The single atoms placed with the new method are now to be tested in detail as catalysts for various chemical reactions," says Bernhard C. Bayer.

Research Report: "Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms"


Related Links
Vienna University Of Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Exploring quantum correlations of classical light source for image transmission
Beijing, China (SPX) Sep 01, 2021
In science fiction, "teleportation" is commonly portrayed as a means to transfer physical objects from one location to another one some distance away. But in physics, quantum teleportation only transfers quantum information, i.e., the quantum state of a particle, without any physical transmission of the particle itself. The quantum protocol of teleportation was theoretically developed by Bennett and coworkers in 1993 and its first experimental demonstration was realized by Bouwmeester and his coll ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Cosmonaut calls 1st approach to Nauka Module during spacewalk from ISS 'Historic Moment'

Protective equipment against radiation to be tested on Nauka Module on ISS in 2023

Hurricane Ida recovery assessments continue at NASA Michoud

NASA welcomes new Russian commitment to space station

TIME AND SPACE
Firefly Aerospace rocket explodes minutes after first launch

Application of fission-powered spacecraft in solar system exploration missions

Firefly Aerospace rocket Alpha explodes after California liftoff

ESA Council agrees resolution on Ariane 6 and Vega-C exploitation and future space transportation

TIME AND SPACE
NASA plans yearlong Mars simulation to test limits of isolation

NASA's Perseverance rover collects first rock sample

After six months on Mars, NASA's tiny copter is still flying high

NASA's Perseverance Rover obtains first rock core

TIME AND SPACE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

TIME AND SPACE
Independent group formed to advance interoperability in satellite and ground system networks

Kleos secures A$12.6 million to grow constellation

NASA works to give satellite swarms a hive mind

World-leading space venture capital firm announces idea-stage incubator

TIME AND SPACE
D-Orbit signs with HyImpulse Technologies for EU mission

3D-printed lunar floor

Israel Space Agency selects Ramon.Space for computing payload

DARPA announces research teams to advance fundamental science of atomic vapors

TIME AND SPACE
The first cells might have used temperature to divide

Cold planets exist throughout our Galaxy, even in the Galactic bulge

New class of habitable exoplanets are 'a big step forward' in the search for life

Did nature or nurture shape the Milky Way's most common planets

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.