. | . |
Anchoring single atoms by Staff Writers Vienna, Austria (SPX) Sep 01, 2021
There is a dictum to "never change a running system". New methods can however be far superior to older ones. While to date chemical reactions are mainly accelerated by catalytic materials that comprise several hundreds of atoms, the use of single atoms could provide a new approach for catalysis. An international research team, led by the TU Wien, Austria, has now developed a new method for anchoring individual atoms in a controlled and stable manner on surfaces. This is an important step towards single atom catalysis. The researchers working with Bernhard C. Bayer presented the new method in the scientific journal ACS Nano.
Single atoms to replace nanoparticles In the newly developed method, silicon atoms serve as "anchors" for single metal atoms. Silicon atoms themselves often occur as an impurity in the carbon support materials. To these silicon atoms now indium atoms are bound, which can act as single-atom catalysts. "The indium atoms bind selectively to the silicon anchors in the carbon crystal lattice," says Bernhard C. Bayer from the Institute for Materials Chemistry at the TU Wien. "Thereby the individual indium atoms remain stable and anchored at their positions and do not clump together," continues Bayer, who led the research. "What makes the new technology particularly exciting is that the indium atoms are anchored in a self-assembled fashion, if the reaction conditions are right. This makes the process potentially scalable," adds Kenan Elibol from the University of Vienna and the Trinity College Dublin and first author of the study. The process however also came with its challenges that the research team successfully met. Particularly the deposition of individual atoms on solid support surfaces is difficult. This is because single atoms normally move away quickly from their locations and clump together to form larger particles. The formation of such larger particles negates the advantages of single atom catalysis.
Further tests to follow "Such controlled and room-temperature-stable anchoring of individual atoms on solid surfaces has not been reported yet and opens up exciting perspectives for catalytic applications in the fields of energy and environment," adds Dominik Eder from the TU Wien and an expert in catalysis. Further experiments will follow so that the method developed by the Viennese researchers can also be industrially used: "The single atoms placed with the new method are now to be tested in detail as catalysts for various chemical reactions," says Bernhard C. Bayer.
Research Report: "Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms"
Exploring quantum correlations of classical light source for image transmission Beijing, China (SPX) Sep 01, 2021 In science fiction, "teleportation" is commonly portrayed as a means to transfer physical objects from one location to another one some distance away. But in physics, quantum teleportation only transfers quantum information, i.e., the quantum state of a particle, without any physical transmission of the particle itself. The quantum protocol of teleportation was theoretically developed by Bennett and coworkers in 1993 and its first experimental demonstration was realized by Bouwmeester and his coll ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |