Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
An optical switch based on a single nano-diamond
by Staff Writers
Barcelona, Spain (SPX) Oct 18, 2013


This shows the nanomanipulation of an artificial atom. Credit: ICFO.

A recent study led by researchers of the ICFO (Institute of Photonic Sciences) demonstrates that a single nano-diamond can be operated as an ultrafast single-emitter optical switch operating at room temperature. The scientific results of this study have been published in Nature Physics.

Electronic transistors have become a key component to modern electronics, drastically improving the speed of information processing of current technologies. An electronic transistor is a semiconductor device used to amplify and switch electronic signals.

The much sought after optical transistor (the photonic counterpart of the electronic transistor) is poised to become a central ingredient in the development of optical signal processing.

The motivation for using photons rather than electrons not only comes from their faster dynamics but also from their weaker interaction with the environment, which enable a high degree of integration and the realization of quantum operations.

Prior studies have demonstrated that single dye molecules can be operated as optical transistors with the disadvantage that they worked exclusively at extremely low temperatures. Such restrictions on the temperature made these optical transistors cumbersome for application to quantum computing.

However in this recent ICFO study, scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light. A Nano-diamond containing a nitrogen impurity behaves like an artificial atom although much more stable at room temperature than a real atom due to its encapsulation.

The ICFO scientists discovered a novel physical mechanism that enables the control of the way the nano-diamond interacts with light. While excited to its ON state by a green laser, a suitable near infrared illumination was found to act as an efficient and fast way to switch it OFF.

Based on this simple concept, they were able to modulate the optical nano-diamond ON and OFF at extremely high speeds, demonstrating its robustness and viability for very fast information processing and quantum computer operations.

Quidant remarks that "what is really attractive about our discovery is that our nano-switch combines very small dimensions (compatible with integrating a large number of them in a small area) with very fast response time (meaning lots of operations in a short time) and operation at room temperature".

This new technique will contribute to the development of future integrated optical circuits as well as quantum information processing for quantum computing.

Michael Geiselmann, Renaud Marty, F. Javier Garcia de Abajo and Romain Quidant, Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre, Nature Physics (2013), doi:10.1038/nphys2770

.


Related Links
The Institute of Photonic Sciences
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
'White graphene' halts rust in high temps
Houston TX (SPX) Oct 15, 2013
Atomically thin sheets of hexagonal boron nitride (h-BN) have the handy benefit of protecting what's underneath from oxidizing even at very high temperatures, Rice University researchers have discovered. One or several layers of the material sometimes called "white graphene" keep materials from oxidizing - or rusting - up to 1,100 degrees Celsius (2,012 degrees Fahrenheit), and can be made ... read more


CARBON WORLDS
Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

CARBON WORLDS
India sets November 5 for Mars mission launch

MAVEN Launch Preps on Schedule

Phobos-Grunt-2: Russia to probe Martian moon by 2022

Russian scientists set sights on space

CARBON WORLDS
NASA strives to tame 'big data' flowing in from dozens of missions

Chinese no longer banned from NASA astronomy meet

'Pillownauts' spend 3 weeks in bed as part of astronaut studies

Who's the ace among aces?

CARBON WORLDS
Is China Challenging Space Security

NASA's China policy faces mounting pressure

Ten Years of Chinese Astronauts

NASA vows to review ban on Chinese astronomers

CARBON WORLDS
Cygnus cargo craft leaves international space station

Cygnus cargo craft readies to leave space station

Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

First CASIS Funded Payloads Berthed to the ISS

CARBON WORLDS
Astrium awarded three new contracts by ESA for Ariane 6 and Ariane 5 ME launchers

Sounding Rocket Calibrates NASA's SDO Instrument

Russia Readies Proton Rocket for October 20 Launch

Sunshield preparations bring Gaia closer to deep-space Soyuz launch

CARBON WORLDS
Count of discovered exoplanets passes the 1,000 mark

Iowa research team see misaligned planets in distant system

Astronomer see misaligned planets in distant system

Water discovered in remnants of extrasolar rocky world orbiting white dwarf

CARBON WORLDS
NSF Awards $12 Million to SDSC to Deploy "Comet" Supercomputer

Rice scientists create a super antioxidant

Cracked metal, heal thyself

'Walking droplets'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement