![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Feb 08, 2021
By analyzing sediments jostled by ground shaking, researchers have shown that two impact craters near Stuttgart were created by independent asteroid impacts rather than a binary asteroid strike. A Gothic church rises high above the medieval town of Nordlingen, Germany. But unlike most churches, St. George's is composed of a very special type of rock: suevite, a coarse-grained breccia that's formed only in powerful impacts. That discovery and other lines of evidence have helped researchers determine that Nordlingen lies within an impact crater. Now, scientists have unearthed evidence that this crater and another one just 40 kilometers away were formed by a "double disaster" of two independent asteroid impacts. That revises a previous theory that these features are the relics of a one-two cosmic punch from a pair of gravitationally bound asteroids striking Earth simultaneously.
A Handful of Double Craters That makes sense, said William Bottke, a planetary scientist at the Southwest Research Institute in Boulder, Colo., not involved in the new research. "We don't have that many craters on the Earth. When you see two sitting right next to one another, it's natural to think there's an association." However, scientists have theoretically determined that the binary asteroid scenario is unlikely. That's because most binary asteroids are orbiting one another too closely to produce two distinct craters were they to slam into a rocky body, Bottke and his colleagues showed back in the 1990s. "If you're going to get two separate craters from the impact of a binary asteroid, they have to be pretty well separated," said Bottke.
Two Craters Near Stuttgart The Ries crater formed about 14.8 million years ago during the Miocene epoch, argon-40/argon-39 age dating has revealed. The age of the Steinheim Basin hasn't been conclusively measured, but some researchers have suggested that it formed contemporaneously. "It was nearly dogma in Germany that this must be the result of a double impact at the same time," said Buchner.
Two Episodes of Ground Shaking However, the researchers found that this seismite horizon was crosscut by a second horizon, this one consisting of vertical tubelike features known as clastic dikes. The discovery of these two distinct seismite units is evidence of two separate episodes of ground shaking, Buchner and his colleagues concluded. That rules out a strike by a binary asteroid, which would have launched just one round of seismic waves. The impact that created the Ries crater must have formed first, the scientists surmised, because blocks of limestone-ejecta from the Ries impact-cap the lower seismite horizon. That's consistent with previous research suggesting that fossils within the Ries crater are a few hundred thousand years older than fossils found within the Steinheim Basin. This region "witnessed a double disaster in the Middle Miocene," the team concluded in their paper, which was published last month in Scientific Reports. That's rare but not unheard of, said Bottke. "If you only have so much terrain and you keep adding craters, eventually, two are going to be very close to one another, just by chance."
Research Report: "An asteroid "double disaster" struck Germany in the Miocene"
![]() ![]() The craters on Earth Freiburg, Germany (SPX) Nov 04, 2020 Prof. Dr. Thomas Kenkmann, geologist from the University of Freiburg's Institute of Earth and Environmental Sciences, together with mineralogist Prof. Dr. Wolf Uwe Reimold from the University of Brasilia, Brazil, and Dr. Manfred Gottwald from the German Aerospace Center (DLR) published an atlas providing a comprehensive overview of all known impact craters on every continent. The authors present the more than 200 terrestrial impact sites in high-resolution topographic maps and satellite images, co ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |