. | . |
An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene by Staff Writers Berlin, Germany (SPX) Jan 29, 2016
Fuel cells convert the chemical energy stored in hydrogen (H2) into electrical energy by electrochemically "combusting" hydrogen gas with oxygen (O2) from the air into water (H2O), thereby generating electricity. As a result, future electric automobiles might be operated quite well with fuel cells instead of with heavy batteries. But for "cold" combustion of hydrogen and oxygen to function well, the anode and cathode of the fuel cell must be coated with extremely active catalysts. The problem is that the platinum-based catalysts employed for this contribute about 25 per cent of the total fuel-cell costs. However, iron-nitrogen complexes in graphene (known as Fe-N-C catalysts) have been achieving levels of activity comparable to Pt/C catalysts for several years already. "Systematic investigation of Fe-N-C catalysts was difficult though, since most approaches for preparing the materials lead to heterogeneous compounds. These contain various species of iron compounds such as iron carbides or nitrides besides the intended FeN4 centres", explains Sebastian Fiechter of HZB.
High density of catalytically active centres As a result, the metal-N-C catalysts developed at HZB held the world record for the highest density of catalytically active centres of various nitro-metallic compounds up to about 2011. However, it remained unclear as to which inorganic compounds influenced the catalytic efficiency. The team was now able to determine this.
Purification process removes interfering compounds Ulrike Kramm, who has since become a junior professor at TU Darmstadt, was successful in purifying several catalysts to such an extent that all the iron present in the graphene layers was exclusively in form of complexes made of iron and four nitrogen atoms (FeN4). The scientists thereby disproved the hypothesis debated among experts by which improvement in the activity of the FeN4 centres only resulted from promoters, as they are known, such as iron nanoparticles.
Now verified: FeN4 centres provide the high catalytic efficiency even without promoters "The purification process enables us now to create catalysts having exclusively FeN4 centres. This allows us to subsequently select compounds to be added afterwards as promoters that further improve the activity level or stability of these catalysts", as Ulrike Kramm summarises her research approach at TU Darmstadt. Sebastian Fiechter and Peter Bogdanoff are continuing their research at HZB on novel catalysts, especially in regard to hydrogen generation using sunlight. "We can also use the insights into how these metal-N-C catalysts work in our on-going development of catalysing materials for solar-based hydrogen production at HZB," says Fiechter. Together, the research activities at HZB and TU Darmstadt could enable the development of a complete regenerative energy cycle, using solar hydrogen in low cost fuel cells, thus producing electricity without climate gas emission. The results have now been published in the Journal of the American Chemical Society. "On an easy way to prepare Metal-Nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR", by Ulrike I. Kramm, Iris Herrmann-Geppert, Jan Behrends, Klaus Lips, Sebastian Fiechter and Peter Bogdanoff
Related Links Helmholtz-Zentrum Berlin fur Materialien und Energie Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |