24/7 Space News
IRON AND ICE
Algorithm ensnares its first 'potentially hazardous' asteroid
Discovery images from the ATLAS survey, with 2022 SF289 visible in the red boxes. ATLAS/University of Hawaii Institute for Astronomy/NASA. Video: 2022 SF289: Novel Code Ensnares its First Potentially Hazardous Asteroid
Algorithm ensnares its first 'potentially hazardous' asteroid
by Staff Writers
Seattle WA (SPX) Aug 01, 2023

An asteroid discovery algorithm - designed to uncover near-Earth asteroids for the Vera C. Rubin Observatory's upcoming 10-year survey of the night sky - has identified its first "potentially hazardous" asteroid, a term for space rocks in Earth's vicinity that scientists like to keep an eye on. The roughly 600-foot-long asteroid, designated 2022 SF289, was discovered during a test drive of the algorithm with the ATLAS survey in Hawaii. Finding 2022 SF289, which poses no risk to Earth for the foreseeable future, confirms that the next-generation algorithm, known as HelioLinc3D, can identify near-Earth asteroids with fewer and more dispersed observations than required by today's methods.

"By demonstrating the real-world effectiveness of the software that Rubin will use to look for thousands of yet-unknown potentially hazardous asteroids, the discovery of 2022 SF289 makes us all safer," said Rubin scientist Ari Heinze, the principal developer of HelioLinc3D and a researcher at the University of Washington.

The solar system is home to tens of millions of rocky bodies ranging from small asteroids not larger than a few feet, to dwarf planets the size of our moon. These objects remain from an era over four billion years ago, when the planets in our system formed and took their present-day positions.

Most of these bodies are distant, but a number orbit close to the Earth, and are known as near-Earth objects, or NEOs. The closest of these - those with a trajectory that takes them within about 5 million miles of Earth's orbit, or about 20 times the distance from Earth to the moon - warrant special attention. Such "potentially hazardous asteroids," or PHAs, are systematically searched for and monitored to ensure they won't collide with Earth, a potentially devastating event.

Scientists search for PHAs using specialized telescope systems like the NASA-funded ATLAS survey, run by a team at the University of Hawaii's Institute for Astronomy. They do so by taking images of parts of the sky at least four times every night. A discovery is made when they notice a point of light moving unambiguously in a straight line over the image series. Scientists have discovered about 2,350 PHAs using this method, but estimate that at least as many more await discovery.

From its peak in the Chilean Andes, the Vera C. Rubin Observatory is set to join the hunt for these objects in early 2025. Funded primarily by the U.S. National Science Foundation and the U.S. Department of Energy, Rubin's observations will dramatically increase the discovery rate of PHAs. Rubin will scan the sky unprecedentedly quickly with its 8.4-meter mirror and massive 3,200-megapixel camera, visiting spots on the sky twice per night rather than the four times needed by present telescopes. But with this novel observing "cadence," researchers need a new type of discovery algorithm to reliably spot space rocks.

Rubin's solar system software team at the University of Washington's DiRAC Institute has been working to just develop such codes. Working with Smithsonian senior astrophysicist and Harvard University lecturer Matthew Holman, who in 2018 pioneered a new class of heliocentric asteroid search algorithms, Heinze and Siegfried Eggl, a former University of Washington researcher who is now an assistant professor at the University of Illinois at Urbana-Champaign, developed HelioLinc3D: a code that could find asteroids in Rubin's dataset. With Rubin still under construction, Heinze and Eggl wanted to test HelioLinc3D to see if it could discover a new asteroid in existing data, one with too few observations to be discovered by today's conventional algorithms.

John Tonry and Larry Denneau, lead ATLAS astronomers, offered their data for a test. The Rubin team set HelioLinc3D to search through this data and on July 18, 2023 it spotted its first PHA: 2022 SF289, initially imaged by ATLAS on September 19, 2022 at a distance of 13 million miles from Earth.

In retrospect, ATLAS had observed 2022 SF289 three times on four separate nights, but never the requisite four times on one night to be identified as a new NEO. But these are just the occasions where HelioLinc3D excels: It successfully combined fragments of data from all four nights and made the discovery.

"Any survey will have difficulty discovering objects like 2022 SF289 that are near its sensitivity limit, but HelioLinc3D shows that it is possible to recover these faint objects as long as they are visible over several nights," said Denneau. "This in effect gives us a 'bigger, better' telescope."

Other surveys had also missed 2022 SF289, because it was passing in front of the rich starfields of the Milky Way. But by now knowing where to look, additional observations from Pan-STARRS and Catalina Sky Survey quickly confirmed the discovery. The team used B612 Asteroid Institute's ADAM platform to recover further unrecognized observations by the NSF-supported Zwicky Transient Facility telescope.

2022 SF289 is classified as an Apollo-type NEO. Its closest approach brings it within 140,000 miles of Earth's orbit, closer than the moon. Its diameter of 600ft is large enough to be classified as "potentially hazardous." But despite its proximity, projections indicate that it poses no danger of hitting Earth for the foreseeable future. Its discovery has been announced in the International Astronomical Union's Minor Planet Electronic Circular MPEC 2023-O26.

Currently, scientists know of 2,350 PHAs but expect there are more than 3,000 yet to be found.

"This is just a small taste of what to expect with the Rubin Observatory in less than two years, when HelioLinc3D will be discovering an object like this every night," said Rubin scientist Mario Juric, director of the DiRAC Institute, professor of astronomy at the University of Washington and leader of the team behind HelioLinc3D. "But more broadly, it's a preview of the coming era of data-intensive astronomy. From HelioLinc3D to AI-assisted codes, the next decade of discovery will be a story of advancement in algorithms as much as in new, large, telescopes."

Video: 2022 SF289: Novel Code Ensnares its First Potentially Hazardous Asteroid

Related Links
Rubin Observatory
Asteroid and Comet Mission News, Science and Technology

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
IRON AND ICE
NASA releases agency strategy for planetary defense to safeguard Earth
Washington DC (SPX) Apr 20, 2023
To help guide NASA's efforts over the next decade, the agency has released its Planetary Defense Strategy and Action Plan. For three decades, NASA has engaged in studying near-Earth objects (NEOs), asteroids and comets that orbit the Sun and come within 30 million miles of our planet's orbit. While NEOs have the potential to help planetary scientists better understand the birth and formation of our solar system, some travel in orbits that bring them close enough to Earth's vicinity to make them po ... read more

IRON AND ICE
NASA announces crew for 2024 ISS rotation mission

NASA and Axiom Space join forces for fourth private mission in 2024

NASA back in touch with Voyager 2 after 'interstellar shout'

NASA hears 'heartbeat' from Voyager 2 after inadvertant blackout

IRON AND ICE
Boeing says troubled Starliner will be ready to fly crew by March

Hypersonics Capability Center: Northrop Grumman's next step beyond Mach 5

SpaceX launches 22 additional Starlink satellites

A new frontier for space in Australia with approval granted for a permanent commercial space launch facility in Koonibba

IRON AND ICE
Daily records of atmospheric temperature with Perseverance

Can we see Mars' Breath in the Winter Cold: Sols 3907-3908

Curiosity faces its toughest climb yet on Mars

Unraveling river pathways on Earth and Mars

IRON AND ICE
Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

China's Space Station Opens Doors to Global Scientific Community

China's Lunar Mission targets manned landing by 2030

IRON AND ICE
Galaxy 37 Horizons-4 performing well after launch

Toshiba prepares for $14 bn deal to go private

JUPITER 3 set to revolutionize satellite connectivity across the Americas

Iridium Board of Directors approves additional share repurchase program

IRON AND ICE
Solestial's Tech to Power Atomos's OTVs

Recycling parts for life on the Moon

Captain Kirk to the holodeck: Shatner beams in to remote meeting

UTokyo unfolds the 'Future Window' dream

IRON AND ICE
New exoplanet discovery builds better understanding of planet formation

Violent Atmosphere Gives Rare Look at Early Planetary Life

Using cosmic weather to study which worlds could support life

Water discovered in rocky planet-forming zone offers clues on habitability

IRON AND ICE
James Webb Space Telescope sees Jupiter moons in a new light

NASA's Juno Is Getting Ever Closer to Jupiter's Moon Io

SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

First ultraviolet data collected by ESA's JUICE mission

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.