|
. | . |
|
by Staff Writers Schriever AFB CO (AFNS) Feb 12, 2015
The Air Force concluded a six-month rigorous and complex multiservice operational test and evaluation of its Advanced Extremely High Frequency system in January at Schriever Air Force Base, Colorado. The test and evaluation's goal was to ensure the AEHF system performed its missions the way it was designed -to provide survivable, global, secure, protected and jam-resistant communications for military ground, sea and air assets. The Air Force Operational Test and Evaluation Center Detachment 4 at Peterson Air Force Base, Colorado, partnered with the 4th Space Operations Squadron, which is responsible for the command and control of the system, as well as other Air Force, Army, Navy and Marine units. "In the event that we go into a nuclear war, we have to make sure a communication link for Department of Defense components and national leadership is available during a contested environment," said Maj. Matthew Collins, AFOTEC Det. 4 AEHF test director. "And (AEHF) is a system that is capable of providing that connectivity." To ensure AEHF meets its mission, the team laid out test and evaluation objectives -- validate the AEHF's advanced ground mobile unit, validate the system's integration to the legacy Milstar constellation, confirm its communication capability for the end-users and ensure the system can operate in a nuclear environment.
Ground mobile unit "If for some reason, we need to go out and operate the satellites because we can't do it here at Schriever because of a threat, a war or any incident, then we go operate out of our mobile units," said Lt. Col. Zachary Owen, 4 SOPS director of operations. "The piece of this testing was to make sure we can operate out of those mobile units for an extended period of time." Since 4 SOPS has a unique ability to operate its satellites using two control systems, it allowed the mobile units to operate the satellites using its dedicated system, which is the AEHF Satellite Mission Control Subsystem. For the duration of the test, 4 SOPS maximized its use of the mobile ASMCS capability and minimized its operations from the IOE; though 4 SOPS kept a presence in the IOE for command and control of the day-to-day operational mission. "In the mobile unit, we had command and telemetry of the system so we could see the health of the satellites at all times," said Capt. Michael Meoli, 4 SOPS Mobile Operations Flight commander. "We had an active command role in the mobile unit, while the IOE had passive telemetry; meaning, they could see the state of health of the system but could not command it." The test also had to ensure the satellites' unique capability of operating autonomously during its transition period from IOE operations into the mobile units. "Basically, our satellites can still provide communication to users so there is no interruption of service," Meoli said. "It gives us a certain amount of time to deploy the mobile unit, and have it ready and operational."
AEHF, Milstar integration "One AEHF satellite has 10 times the capacity of the entire Milstar constellation," Owen said. "We operate them as one constellation instead of two separate systems." There are now enough AEHF satellites on orbit to allow effective testing of the constellation, and its dedicated ground system, the ASMCS, to see how well those AEHF satellites and their command and control systems integrate with legacy constellations. "We conducted more than 250 tests in the IOE," said Capt. Aaron Doyle, 4 SOPS mobile engineer. "Some of the tests were conducting table uploads, where you run everything on the satellite. We want to see if we can upload it to the ASMCS, change something around, then upload those changes to the satellite, and have it do a download from the satellite with that same information." The table uploads deliver software updates to satellite so 4 SOPS operators can make adjustments to the satellite's various systems and provide assistance to distant-end users. "This way you could adjust the settings so you could optimize the satellites for users worldwide," Owen said.
Cybersecurity assessment "They came up with a very comprehensive evaluation of 4 SOPS's network security," Collins said. The cybersecurity assessment is a very high DOD interest item, he said. As part of the evaluation, a team came out and probed the network to check on the security of the system, Owen said. "They tried to break in, for lack of a better term; they came and acted as bad guys," he said. The teams were very impressed with the network's security architecture, and the procedures in place to ensure it is protected from insider and outsider threats.
End users "We have to make sure that AEHF can provide combat effects to the warfighters so they can accomplish their mission," Collins said. AFOTEC deployed personnel to two Navy destroyers and two submarines, three Army locations, two Marine sites and multiple U.S. Strategic Command locations. The test also included international partners, such as the United Kingdom, Canada and the Netherlands. "It was a huge test," Collins said. "Overall, it has taken about six months. We tested a total of 38 GSUs (geographically separated units). It was an expansive and rigorous test." During the evaluation, AFOTEC ensured the test was as realistic as possible in an operational environment, he said.
Nuclear environment "For the first time ever, we tested the nuller and scintillation capability of the satellites in an operationally realistic environment," Collins said. "It is the unique capability of the satellites to be able to operate in a contested environment." The team partnered with outside agencies to provide a realistic scenario mirroring a contested environment, he said.
Success "Once AFOTEC is done with the report, the Air Force Space Command leadership will decide whether the AEHF system has reached initial operation capability," Owen said. "This is a big deal." Reaching that capability will allow for more operational users, he said. With a rigorous, end-to-end test like this, Collins reiterated the importance of teamwork not only at 4 SOPS but with other organizations as well. "One of the most successful things in this whole test process has been the coordination and teamwork between all entities involved," he said. "We coordinated with the program office, headquarters Air Force Space Command, contractors, private organizations, combatant commands, international partners, Air Force, Army, Navy and Marines, and the only way it worked was through the active collaboration of all those entities to focus on mission success to deliver the most capable next generation of protected satellite communications to the 50th Space Wing and our warfighters world- wide. According to senior leadership at the Space and Missile Systems Center, the success of the AEHF program is what they want to see in all other space programs. This is the benchmark for all future space acquisition programs."
Related Links USAF Space Command Military Space News at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |