Subscribe free to our newsletters via your
. 24/7 Space News .




SPACEWAR
Air Force conducts massive protected MILSATCOM test
by Staff Writers
Schriever AFB CO (AFNS) Feb 12, 2015


Airmen with the 4th Space Operations Squadron resolve satellite anomalies from their advanced ground mobile units Jan. 13, 2015, at Schriever Air Force Base, Colo. The squadron is responsible for command and control of the Milstar/Advanced Extremely High Frequency satellite constellation. The Air Force concluded a six-month rigorous and complex multiservice operational test and evaluation of its AEHF system in January. Image courtesy U.S. Air Force photo and Staff Sgt. Julius Delos Reyes.

The Air Force concluded a six-month rigorous and complex multiservice operational test and evaluation of its Advanced Extremely High Frequency system in January at Schriever Air Force Base, Colorado.

The test and evaluation's goal was to ensure the AEHF system performed its missions the way it was designed -to provide survivable, global, secure, protected and jam-resistant communications for military ground, sea and air assets.

The Air Force Operational Test and Evaluation Center Detachment 4 at Peterson Air Force Base, Colorado, partnered with the 4th Space Operations Squadron, which is responsible for the command and control of the system, as well as other Air Force, Army, Navy and Marine units.

"In the event that we go into a nuclear war, we have to make sure a communication link for Department of Defense components and national leadership is available during a contested environment," said Maj. Matthew Collins, AFOTEC Det. 4 AEHF test director. "And (AEHF) is a system that is capable of providing that connectivity."

To ensure AEHF meets its mission, the team laid out test and evaluation objectives -- validate the AEHF's advanced ground mobile unit, validate the system's integration to the legacy Milstar constellation, confirm its communication capability for the end-users and ensure the system can operate in a nuclear environment.

Ground mobile unit
In order to validate its advanced ground mobile units, 4 SOPS simulated a deployment of its ground mobile assets to make it easier for personnel and to save time and money. The squadron members operated the satellite constellation from the mobile systems instead of from the squadron's normal control center in the Integrated Operations Environment.

"If for some reason, we need to go out and operate the satellites because we can't do it here at Schriever because of a threat, a war or any incident, then we go operate out of our mobile units," said Lt. Col. Zachary Owen, 4 SOPS director of operations. "The piece of this testing was to make sure we can operate out of those mobile units for an extended period of time."

Since 4 SOPS has a unique ability to operate its satellites using two control systems, it allowed the mobile units to operate the satellites using its dedicated system, which is the AEHF Satellite Mission Control Subsystem. For the duration of the test, 4 SOPS maximized its use of the mobile ASMCS capability and minimized its operations from the IOE; though 4 SOPS kept a presence in the IOE for command and control of the day-to-day operational mission.

"In the mobile unit, we had command and telemetry of the system so we could see the health of the satellites at all times," said Capt. Michael Meoli, 4 SOPS Mobile Operations Flight commander. "We had an active command role in the mobile unit, while the IOE had passive telemetry; meaning, they could see the state of health of the system but could not command it."

The test also had to ensure the satellites' unique capability of operating autonomously during its transition period from IOE operations into the mobile units.

"Basically, our satellites can still provide communication to users so there is no interruption of service," Meoli said. "It gives us a certain amount of time to deploy the mobile unit, and have it ready and operational."

AEHF, Milstar integration
AEHF also has to prove its ability to integrate with Milstar, which is the legacy constellation of the protected Military Satellite Communication systems. The first Milstar satellite was launched in 1994 and is still operational. The Air Force launched its first AEHF satellite in 2010; which is the follow-on satellite to Milstar.

"One AEHF satellite has 10 times the capacity of the entire Milstar constellation," Owen said. "We operate them as one constellation instead of two separate systems."

There are now enough AEHF satellites on orbit to allow effective testing of the constellation, and its dedicated ground system, the ASMCS, to see how well those AEHF satellites and their command and control systems integrate with legacy constellations.

"We conducted more than 250 tests in the IOE," said Capt. Aaron Doyle, 4 SOPS mobile engineer. "Some of the tests were conducting table uploads, where you run everything on the satellite. We want to see if we can upload it to the ASMCS, change something around, then upload those changes to the satellite, and have it do a download from the satellite with that same information."

The table uploads deliver software updates to satellite so 4 SOPS operators can make adjustments to the satellite's various systems and provide assistance to distant-end users. "This way you could adjust the settings so you could optimize the satellites for users worldwide," Owen said.

Cybersecurity assessment
The multiservice test also evaluated the AEHF's secure network. AFOTEC enlisted the 177th Information Aggressor Squadron and 92nd Information Operation Squadron to conduct a full up operational cybersecurity assessment.

"They came up with a very comprehensive evaluation of 4 SOPS's network security," Collins said.

The cybersecurity assessment is a very high DOD interest item, he said.

As part of the evaluation, a team came out and probed the network to check on the security of the system, Owen said.

"They tried to break in, for lack of a better term; they came and acted as bad guys," he said. The teams were very impressed with the network's security architecture, and the procedures in place to ensure it is protected from insider and outsider threats.

End users
Since the AEHF serves not only the Air Force, but other services as well, the test also looked at how the customers - Air Force, Army, Navy, Marines and international partners - use the system.

"We have to make sure that AEHF can provide combat effects to the warfighters so they can accomplish their mission," Collins said.

AFOTEC deployed personnel to two Navy destroyers and two submarines, three Army locations, two Marine sites and multiple U.S. Strategic Command locations. The test also included international partners, such as the United Kingdom, Canada and the Netherlands.

"It was a huge test," Collins said. "Overall, it has taken about six months. We tested a total of 38 GSUs (geographically separated units). It was an expansive and rigorous test."

During the evaluation, AFOTEC ensured the test was as realistic as possible in an operational environment, he said.

Nuclear environment
Another important test for the AEHF system is to ensure it can provide protected communication, even during a nuclear environment.

"For the first time ever, we tested the nuller and scintillation capability of the satellites in an operationally realistic environment," Collins said. "It is the unique capability of the satellites to be able to operate in a contested environment."

The team partnered with outside agencies to provide a realistic scenario mirroring a contested environment, he said.

Success
Though the test has concluded, AFOTEC will still analyze the data gathered to determine if the AEHF system is performing its mission vital to national security.

"Once AFOTEC is done with the report, the Air Force Space Command leadership will decide whether the AEHF system has reached initial operation capability," Owen said. "This is a big deal."

Reaching that capability will allow for more operational users, he said. With a rigorous, end-to-end test like this, Collins reiterated the importance of teamwork not only at 4 SOPS but with other organizations as well.

"One of the most successful things in this whole test process has been the coordination and teamwork between all entities involved," he said.

"We coordinated with the program office, headquarters Air Force Space Command, contractors, private organizations, combatant commands, international partners, Air Force, Army, Navy and Marines, and the only way it worked was through the active collaboration of all those entities to focus on mission success to deliver the most capable next generation of protected satellite communications to the 50th Space Wing and our warfighters world- wide. According to senior leadership at the Space and Missile Systems Center, the success of the AEHF program is what they want to see in all other space programs. This is the benchmark for all future space acquisition programs."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
USAF Space Command
Military Space News at SpaceWar.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SPACEWAR
Squad X Core Technologies Seeks to Bring Technological Advances to the Infantry Squad
Washington DC (SPX) Feb 11, 2015
Warfighters in aircraft, on ships and in ground vehicles have benefited tremendously from technological advances in recent decades, with advanced capabilities ranging from real-time situational awareness to precision armaments. But many of these benefits depend on equipment with substantial size, weight and power requirements, and so have remained unavailable to dismounted infantry squads who mu ... read more


SPACEWAR
LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

SPACEWAR
Mars Orbiter Spies Curiosity Rover at Work

Meteorite may represent 'bulk background' of Mars' battered crust

Gully patterns document Martian climate cycles

The two faces of Mars

SPACEWAR
Auction house to sell vintage NASA photographs

Heady days for tech sector 15 years after bubble burst

NASA gets $18.5 billion in White House budget proposal

NASA hails spending boost under Obama budget proposal

SPACEWAR
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

SPACEWAR
The Strange Way Fluids Slosh on the International Space Station

NASA's CATS Installed on ISS by Robotic Handoff

Roscosmos, NASA Still Planning on Sending Men Into Space

Russian Cargo Spacecraft to Supply ISS With Black Caviar

SPACEWAR
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX to try rocket recycle launch on Tuesday

SpaceX calls off launch of space-weather satellite

Sea Launch considers replacement of Zenit-3SL rockets

SPACEWAR
"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

Smaller Gas Giants Could Support Life

SPACEWAR
Penta-graphene, a new structural variant of carbon, discovered

Winding borders may enhance graphene

Cheap and abundant chemical outperforms precious metals as a catalyst

Study reveals how oxygen is like kryptonite to titanium




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.