. | . |
Aerojet Rocketdyne achieves 3-D printing milestone by Staff Writers Sacramento CA (SPX) Apr 10, 2017
Aerojet Rocketdyne, a subsidiary of Aerojet Rocketdyne Holdings, Inc. (NYSE:AJRD) has successfully hot-fire tested a full-scale, additively manufactured thrust chamber assembly for the RL10 rocket engine that was built from a copper alloy using selective laser melting (SLM) technology, which is often referred to as 3-D printing. Aerojet Rocketdyne has actively been working over the last decade to incorporate 3-D printing technology into the RL10 and other propulsion systems to make them more affordable while taking advantage of the inherent design and performance capabilities made possible by 3-D printing. This recent testing was enabled by the Defense Production Act Title III program management office located at Wright-Patterson Air Force Base near Dayton, Ohio. "Aerojet Rocketdyne has made several major upgrades to the RL10 to enhance the engine's performance and affordability since it first entered service in the early 1960s," said Aerojet Rocketdyne CEO and President Eileen Drake. "Incorporating additive manufacturing into the RL10 is the next logical step as we look to make the engine even more affordable for our customers." "We believe this is the largest copper-alloy thrust chamber ever built with 3-D printing and successfully tested," said Additive Manufacturing Program Manager Jeff Haynes. "Producing aerospace-quality components with additive manufacturing is challenging. Producing them with a high-thermal-conductivity copper alloy using SLM technology is even more difficult. Infusing this technology into full-scale rocket engines is truly transformative as it opens up new design possibilities for our engineers and paves the way for a new generation of low-cost rocket engines." The 3-D printed RL10 copper thrust chamber would replace the current RL10C-1 model design that uses a very complex array of drawn, hydroformed stainless steel tubes that are brazed together to form a thrust chamber. The new chamber design is made up of only two primary copper parts and takes just under a month to print using SLM technology; reducing overall lead time by several months. The part count reduction of greater than 90 percent is significant as it reduces complexity and cost when compared with RL10 thrust chambers that are built today using traditional manufacturing techniques. Another key benefit provided by 3-D printing is the ability to design and build advanced features that allow for improved heat transfer. For many rocket engine applications, this enhanced heat transfer capability enables a more compact and lighter engine, which is highly desirable in space launch applications. "This full-scale RL10 thrust chamber test series further proves that additive manufacturing technology will enable us to continue to deliver high performance and reliability while substantially reducing component production costs," said RL10 Program Director Christine Cooley. "Now that we have validated our approach with full-scale testing of a 3-D printed injector and copper thrust chamber, we are positioned to qualify a new generation of RL10 engines at a much lower cost; largely attributed to the additive manufacturing capabilities we have developed and demonstrated. With the next generation of RL10 engines, we aim to maintain the reliability and performance that our customers have come to expect, while at the same time making the engine more affordable to meet the demands of today's marketplace." Aerojet Rocketdyne is applying 3-D printing technology to many of its other products, including the RS-25 engines that will help explore deep space, and the company's new AR1 booster engine that is being developed to replace Russian-built RD-180 engines by the congressionally-mandated deadline of 2019. Since its first operational flight in 1963, more than 475 RL10 engines have flown in space to help place numerous spacecraft into Earth orbit and propel others to explore every planet in our solar system.
Boston MA (SPX) Apr 06, 2017 Not far from where Edwin Land - the inventor of the Polaroid camera - made his pioneering discoveries about polarized light, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are continuing to unlock the power of polarization. Recently, a team of researchers led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton H ... read more Related Links Aerojet Rocketdyne Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |