24/7 Space News
ENERGY TECH
Advancing safer lithium energy storage
illustration only
Advancing safer lithium energy storage
by Erica Marchand
Paris, France (SPX) Feb 04, 2025

Charging our phones has become so routine that we rarely reflect on the breakthrough that made it possible. Rechargeable lithium-ion batteries, introduced commercially in the 1990s, propelled a technological revolution that earned their creators the 2019 Nobel Prize in Chemistry. This key innovation underpins the functionality of today's smartphones, wireless headphones, and electric vehicles, making them both financially and environmentally practical.

As our devices grow more advanced, the demand for batteries that pack more power while remaining safe continues to rise. Yet engineering such power sources is far from simple. One promising design is the lithium metal battery, which could deliver more stored energy than standard battery types. Unfortunately, its potential is curtailed by a persistent issue: the emergence of tiny threads, or dendrites, that accumulate with each charge. When dendrites build up, they can form metallic connections that degrade battery functionality and pose a serious fire hazard. Until recently, researchers had limited approaches to probe and understand dendrite formation. In a new study led by Dr. Ayan Maity in the lab of Prof. Michal Leskes at the Weizmann Institute of Science's Molecular Chemistry and Materials Science Department, scientists developed a novel method to identify the factors that spark dendrite growth, as well as to rapidly evaluate various battery components for improved safety and performance.

Rechargeable batteries function by allowing positively charged ions to migrate between the anode (negative electrode) and the cathode (positive electrode) through an electrolyte. Charging forces the ions back into the anode, counter to the usual flow in a typical chemical reaction, thus preparing the battery for another cycle of use. Lithium metal batteries take a different approach by employing a pure lithium metal anode, enabling higher energy storage. However, lithium metal is chemically reactive and quickly forms dendrites when it interacts with the electrolyte. Over time, enough dendrites can short-circuit the battery and raise the likelihood of combustion.

One way to avoid fire risks is to replace the volatile liquid electrolyte with a solid, nonflammable one, often comprising a polymer-ceramic composite. While altering the ratio of polymer to ceramic can influence dendrite growth, finding the ideal formulation remains a challenge for extending battery life.

To investigate, the team employed nuclear magnetic resonance (NMR) spectroscopy, a standard tool for pinpointing chemical structures, and tracked both dendrite formation and the chemical interplay within the electrolyte. "When we examined the dendrites in batteries with differing ratios of polymer and ceramic, we found a kind of 'golden ratio': Electrolytes that are composed of 40 percent ceramic had the longest lives," Leskes explains. "When we went above 40 percent ceramic, we encountered structural and functional problems that impeded battery performance, while less than 40 percent led to reduced battery life." Intriguingly, batteries with that optimal ratio displayed more dendrites overall, but those dendrites were effectively confined in a way that prevented destructive bridging.

These insights prompted a larger question: what halts the extension of the dendrites? The team hypothesized that a thin covering on the surface of dendrites, called the solid electrolyte interphase (SEI), might be crucial. This layer, formed when dendrites interact with the electrolyte, can affect how lithium ions travel through the battery, and it can also either prevent or accelerate the movement of harmful substances between electrodes. Both of these factors, in turn, can stifle or foster further dendrite development.

Probing the chemical composition of such thin SEI films is inherently difficult, since they measure only a few dozen nanometers thick. The researchers tackled this problem by enhancing the signals in their NMR data using dynamic nuclear polarization. This specialized technique leverages the strong spin of polarized lithium electrons, bolstering signals from the atomic nuclei in the SEI and exposing its chemical makeup. Through this refined lens, the researchers discovered precisely how lithium metal interacts with polymer or ceramic materials, revealing that certain SEI layers can simultaneously improve ion transport and block hazardous substances.

Their findings pave the way to design sturdier, safer, and more powerful batteries that will store greater energy for a longer duration with reduced environmental and economic costs. Such next-generation batteries could power larger devices without having to increase the physical size of the battery itself, while also extending the battery's life cycle.

"One of the things I love most about this study is that, without a profound scientific understanding of fundamental physics, we would not have been able to understand what happens inside a battery. Our process was very typical of the work here at the Weizmann Institute. We started with a purely scientific question that had nothing to do with dendrites, and this led us to a study with practical applications that could improve everybody's life," Leskes says.

Research Report:Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy

Related Links
Weizmann Institute of Science
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
More efficient batteries with quantum photonics
Paris, France (SPX) Jan 31, 2025
The QLASS project, led by Politecnico di Milano, is working to develop a quantum photonic computer that harnesses the quantum properties of photons-the fundamental particles of light. With a euro 6 million grant from the European Union as part of the "Quantum Flagship" initiative, the three-year project aims to advance quantum computing capabilities for practical applications. Quantum computers utilize the principles of quantum mechanics to solve complex problems much faster than traditional comp ... read more

ENERGY TECH
SpaceX mission to return US astronauts to happen 'soon': Trump

Satellite technology paves way for space traffic management

NASA Opens New Challenge to Inspire Climate Solutions

India becomes 4th nation to complete unmanned docking in space

ENERGY TECH
China's Hainan Commercial Launch Center expands with two new launch pads

New Shepard's 29th mission to simulate Lunar Gravity

SpaceX launches 21 Starlink satellites from Cape Caneveral

NASA's Artemis II rocket booster stacking process reaches new milestone

ENERGY TECH
ORBIMARS: A proposed terminology for Mars orbital operations

Now That's Ingenuity: First Aircraft Measurement of Winds on Another Planet

NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech

Mysterious Martian mounds formed by ancient water

ENERGY TECH
China launches additional satellites for Spacesail Constellation

Shenzhou XIX crew completes second spacewalk mission

Shenzhou XIX crew completes second spacewalk

China unveils logos for three space missions in 2025

ENERGY TECH
Sidus Space Receives FCC Approval for Direct-to-Device Capability

Starlink connectivity enhances Oracle Enterprise Communications Platform

South American Space Programs: No Cooperation, No Gains

Stoke Space secures $260M in Series C Funding

ENERGY TECH
Tradition and technology sync at China 'AI temple fair'

Data centres chase water, energy savings as AI race ramps up

Materials Can Remember Sequences of Events in Unexpected Ways

SoftBank eyes $15-25 bn investment in OpenAI: FT

ENERGY TECH
Extreme supersonic winds detected on distant exoplanet

Astronauts to Collect Microbial Samples from Space Station Exterior

Double the disks double the discovery new insights into planet formation in DF Tau

Bioactive compounds with industrial applications discovered in Andes bacteria

ENERGY TECH
SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Citizen scientists help decipher Jupiter's cloud composition

Capture theory unveils how Pluto and Charon formed as a binary system

Texas A and M researchers illuminate the mysteries of icy ocean worlds

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.