. 24/7 Space News .
STELLAR CHEMISTRY
Advanced light source upgrade approved to start construction
by Staff Writers
Berkeley CA (SPX) Nov 16, 2022

The upgrade to the Advanced Light Source at Berkeley Lab will add two new particle accelerator rings within the iconic building's footprint.

The Advanced Light Source (ALS), a scientific user facility at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), has received federal approval to start construction on an upgrade that will boost the brightness of its X-ray beams at least a hundredfold.

"The ALS upgrade is an amazing engineering undertaking that is going to give us an even more powerful scientific tool," said Berkeley Lab Director Michael Witherell. "I can't wait to see the many ways researchers use it to improve the world and tackle some of the biggest challenges facing society today."

Scientists will use the upgraded ALS for research spanning biology; chemistry; physics; and materials, energy, and environmental sciences. The brighter, more laser-like light will help experts better understand what's happening at extremely small scales as reactions and processes take place. These insights can have a huge array of applications, such as improving batteries and clean energy technologies, creating new materials for sensors and computing, and investigating biological matter to develop better medicines.

"That's the wonderful thing about the ALS: The applications are so broad and the impact is so profound," said Dave Robin, the project director for the ALS upgrade. "What really excites me every day is knowing that, when it's complete, the ALS upgrade will enable researchers to make scientific advances in many different areas for the next 30 to 40 years."

The DOE approval, known as Critical Decision 3 (CD-3), formally releases funds for purchasing, building, and installing upgrades to the ALS. This includes constructing an entirely new storage ring and accumulator ring, building four feature (two new and two upgraded) beamlines, and installing seismic and shielding upgrades for the concrete structure housing the equipment. The $590 million project is the biggest investment at Berkeley Lab since the ALS was built in 1993.

"Our team has spent years designing every single magnet, vacuum system component, RF [radio-frequency] cavity, power supply, and the rest of the custom design," said Robbie Leftwich-Vann, Berkeley Lab's project manager for the upgrade. "It's exciting to get off the paper and into the world of installing things and making it real."

Brighter beams, better science
The ALS generates X-rays by circulating electrons through a 600-foot-circumference storage ring. As the electrons travel through this series of magnets, they radiate light along beamlines to stations where researchers conduct experiments. The light comes in many wavelengths, but the ALS specializes in "soft" X-rays that reveal the electronic, magnetic, and chemical properties of materials.

The upgraded ALS will use a new storage ring with more advanced magnets that can better steer and focus the electrons, in turn creating brighter, tighter beams of light. This will squeeze the X-ray beams from about 100 microns (thousandths of a millimeter) to only a few microns wide, meaning researchers can image their samples with even finer resolution and over shorter timescales. It's like switching from a cell phone camera in dim light to a top-of-the-line high-speed camera in vivid daylight.

"With the upgrade, we'll be able to routinely study how samples change in 3D - something that is currently very difficult to do," said Andreas Scholl, a physicist at Berkeley Lab and the interim division director for the ALS. "One of our goals is to find and develop the materials that will be essential for the next generation of technologies in areas like energy storage and computing."

With 40 beamlines and more than 1,600 users per year, the ALS supports a variety of research. For example, researchers can look at how microbes break down toxins, study how substances interact to produce better solar cells or biofuels, and test magnetic materials that could have applications in microelectronics. Teams will build two new beamlines optimized to take advantage of the improved light, and realign and upgrade several existing beamlines.

One crucial element of the upgrade already underway is a second ring known as the accumulator, which will take electrons made by the accelerator complex and prepare them for the new storage ring. Construction began on the accumulator in 2020 with a special advance approval known as CD-3a. By installing and testing the accumulator first, teams can minimize how long ALS operations will be paused to complete the upgrade.

Building a ship in a bottle
If you've ever tried to maneuver large furniture into a second-floor apartment, you understand a taste of what installing the new ALS storage ring will involve.

"The biggest challenge for ALS-U is space," said Daniela Leitner, who leads the removal and installation team for the project. "We are literally measuring whether we can put a hand into a particular area."

Many elements in the accelerator tunnel can't be moved, including the new accumulator ring that will run along the inner tunnel wall. Experts have used extensive modeling and simulations to make sure that the current storage ring can be safely removed along designated access paths and replaced with the new rafts of magnets.

Over the next three years, teams will procure and build all of the pieces for the new storage ring and other improvements. With everything prepared, the ALS will enter roughly one year of "dark time" for installation and initial commissioning.

"When the accelerator shuts down, the clock starts," Leitner said. "Things need to run like a choreographed ballet."

Four teams working in parallel will strip out the current ALS storage ring. That means moving almost 500 tons of equipment, including magnets, cables, and support girders (which will need to be plasma cut into three pieces before they can be extracted). Then they'll move in 500 tons of state-of-the-art equipment, carefully connect all the components, and bring an improved ALS back to life. It will then be the most intense source of coherent (laser-like) soft x-rays in the world.

"Preparing for this upgrade has been a lab-wide effort that is going to have a great impact on the scientific community," Witherell said. "I congratulate the entire ALS-U team on their commitment and hard work."


Related Links
Lawrence Berkeley National Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Overcoming the optical resolution limit
Washington DC (SPX) Nov 02, 2022
When measuring with light, the lateral extent of the structures that can be resolved by an optical imaging system is fundamentally diffraction limited. Overcoming this limitation is a topic of great interest in recent research, and several approaches have been published in this area. In a recent study published in the Journal of Optical Microsystems, a team of researchers from the University of Kassel in Germany present an approach that uses microspheres placed directly on the surface of the object to e ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
SmartSat CRC and NASA team up to collaborate on astronaut emergency communications

S.S. Sally Ride delivers experiments to International Space Station

NASA Moon rocket launch delayed again, this time by storm

First geostationary navigation receiver from Beyond Gravity will be sent to orbit

STELLAR CHEMISTRY
NASA views images, confirms discovery of Shuttle Challenger artifact

Hurricane causes only minor damage to Artemis rocket

Twitter chaos deepens as key executives quit

Piece of Challenger space shuttle found off Florida coast

STELLAR CHEMISTRY
Losing the Rhythm - Sols 3648-3649

Perseverance activities at Amalik outcrop

MAVEN observes Martian light show caused by major solar storm

Earth's oldest stromatolites and the search for life on Mars

STELLAR CHEMISTRY
Next-generation rocket for astronauts expected in 2027

Astronauts enter China's Mengtian lab module for first time

China completes in-orbit maneuver to complete Tiangong space station assembly

China's Mengtian lab module docks with space station combination

STELLAR CHEMISTRY
Rocket Lab to supply satellite separation systems for Tranche 1 Transport Layer vendors

Rocket Lab to launch HawkEye 360's Cluster 6 satellites in December

MDA selects Rocket Lab to supply satellite operations control center for the Globalstar constellation

Astra laying off 16% of workforce, honing focus on development

STELLAR CHEMISTRY
With new heat treatment, 3D-printed metals can withstand extreme conditions

Turning concrete into a clean energy source

New quantum phase discovered for developing hybrid materials

Satellogic completes investment in Officina Stellare

STELLAR CHEMISTRY
Early planetary migration can explain missing planets

Oldest planetary debris in our galaxy found from new study

Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

STELLAR CHEMISTRY
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.