. 24/7 Space News .
CHIP TECH
Advance may enable "2D" transistors for tinier microchip components
by David L. Chandler for MIT News
Boston MA (SPX) May 17, 2021

At the interface between the semimetal (bismuth) and the 2D semiconductor (MoS2), there is no energy barrier for the electron to go through, leading to an ultralow contact resistance between them.

Moore's Law, the famous prediction that the number of transistors that can be packed onto a microchip will double every couple of years, has been bumping into basic physical limits. These limits could bring decades of progress to a halt, unless new approaches are found.

One new direction being explored is the use of atomically thin materials instead of silicon as the basis for new transistors, but connecting those "2D" materials to other conventional electronic components has proved difficult.

Now researchers at MIT, the University of California at Berkeley, the Taiwan Semiconductor Manufacturing Company, and elsewhere have found a new way of making those electrical connections, which could help to unleash the potential of 2D materials and further the miniaturization of components - possibly enough to extend Moore's Law, at least for the near future, the researchers say.

The findings are described this week in the journal Nature, in a paper by recent MIT graduates Pin-Chun Shen PhD '20 and Cong Su PhD '20, postdoc Yuxuan Lin PhD '19, MIT professors Jing Kong, Tomas Palacios, and Ju Li, and 17 others at MIT, UC Berkeley, and other institutions.

"We resolved one of the biggest problems in miniaturizing semiconductor devices, the contact resistance between a metal electrode and a monolayer semiconductor material," says Su, who is now at UC Berkeley. The solution proved to be a simple one: the use of a semimetal, the element bismuth, to take the place of ordinary metals to connect with the monolayer material.

Such ultrathin monolayer materials, in this case molybdenum disulfide, are seen as a major contender for a way around the miniaturization limits now being encountered by silicon-based transistor technology. But creating an efficient, highly conductive interface between such materials and metal conductors, in order to connect them to each other and to other devices and power sources, was a challenge holding back progress toward such solutions, Su says.

The interface between metals and semiconductor materials (including these monolayer semiconductors) produces a phenomenon called metal-induced gap state, which leads to the formation of a Schottky barrier, a phenomenon that inhibits the flow of charge carriers. The use of a semimetal, whose electronic properties fall between those of metals and semiconductors, combined with proper energy alignment between the two materials, turned out to eliminate the problem.

Lin explains that the rapid pace of miniaturization of the transistors that make up computer processors and memory chips has stalled out before, around 2000, until a new development that allowed for a three-dimensional architecture of semiconductor devices on a chip broke the logjam in 2007 and rapid progress resumed. But now, he says, "we think we are on the edge of another bottleneck."

So-called two-dimensional materials, thin sheets just one or a few atoms thick, meet all the requirements for enabling a further leap in miniaturization of transistors, potentially reducing by several times a key parameter called the channel length - from around 5 to 10 nanometers, in current cutting-edge chips, to a subnanometer scale. A variety of such materials are being widely explored, including a whole family of compounds known as transition metal dichalcogenides. The molybdenum disulfide used in the new experiments belongs to this family.

The issue of achieving a low-resistance metal contact with such materials has also been hampering basic research on the physics of these novel monolayer materials. Because existing connection methods have such high resistance, the tiny signals needed to monitor the behavior of electrons in the material are too weak to get through. "There are numerous examples coming from the physics side that call for a low-contact resistance between the metal and a semiconductor. So, it's a huge problem in the physics world as well," Su says.

Figuring out how to scale up and integrate such systems at a commercial level could take some time and require further engineering. But for such physics applications, the researchers say, the impact of the new findings could be felt quickly. "I think in physics, many experiments can benefit from this technology immediately," Su says.

Meanwhile, the researchers continue to explore further, continuing to reduce the size of their devices and looking for other pairings of materials that might enable better electrical contacts to the other type of charge carriers, known as holes. They solved the problem for the so-called N-type transistor, but if they can find a combination of channel and electrical contact material to enable an efficient monolayer P-type transistor as well, that would open up many new possibilities for next-generation chips, they say.

Besides MIT and the University of California at Berkeley, the team included researchers at Lawrence Berkeley National Laboratory, the Taiwan Semiconductor Manufacturing Company, the National Taiwan University, and King Abdullah University of Science and Technology in Saudi Arabia. The work was supported by the National Science Foundation, the U.S. Army Research Office, the Office of Naval research, and the U.S. Department of Energy.

Research Report: "Ultralow contact resistance between semimetal and monolayer semiconductors"


Related Links
Nanomaterials and Electronics Group
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
DLR teams up with industry to develop German quantum computers
Berlin, Germany (SPX) May 13, 2021
The German Federal Ministry for Economic Affairs and Energy has granted the German Aerospace Center 740 million euros in funding over the next few years for the purpose of combining and harnessing German expertise in quantum technology and establishing an industrial base. The aim is to construct a number of German prototype quantum computers with different architectures in the next four years within a consortium consisting of DLR, industrial partners and other research institutions. Together, they ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
US Aerospace Company Blue Origin to Begin Selling Tickets for Tourist Trips in Space

Bill Nelson, head of NASA, hails 'new day in space'

Space tourism - 20 years in the making - is finally ready for launch

China wants new space station to be more international

CHIP TECH
Flying at up to Mach 16 could become reality with UCF's developing propulsion system

Virgin Orbit selects AVS to build key infrastructure for launches from Cornwall

NASA announces launch plans for new Dream Chaser spaceplane

NASA continues RS-25 engine testing for future Artemis missions

CHIP TECH
Why Ingenuity's fifth flight will be different

NASA's Ingenuity Helicopter to begin new demonstration phase

NASA extends Mars helicopter mission to assist rover

How Zhurong will attempt to touch down on the red planet

CHIP TECH
China's space station takes shared future concept to space

China launches space station core module Tianhe

Core capsule launched into orbit

Mars mission team prepares for its toughest challenge

CHIP TECH
Spacecraft magnetic valve used to fill drinks

SpaceX launches 60 Starlink satellites from Florida

Egos clash in Bezos and Musk space race

Lithuania to become ESA Associate Member state

CHIP TECH
Water flora in the lakes of the ancient Tethys Ocean islands

US not planning to shoot down errant Chinese rocket: defense chief

Chameleon skin-inspired material changes color, can detect seafood freshness

GMV supplies a Galileo 2nd gen radio frequency constellation simulator

CHIP TECH
Coldplay beam new song into space in chat with French astronaut

Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

NASA's Webb to study young exoplanets on the edge

When the atmosphere isn't enough

CHIP TECH
New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.