. | . |
Advance could help grow stem cells more safely by Staff Writers Providence RI (SPX) May 08, 2016
The most productive way scientists have devised to nurture colonies of human embryonic stem cells is to do so atop a bed of mouse cells. That may be fine for lab research, but it poses an unacceptable contamination risk for stem cells intended for transplant into human patients. In a new study, Brown University bioengineers have developed a synthetic bed that works about as well as the mouse cells, called fibroblasts, without any possibility of contamination. "The gold standard for making the best stem cells would be starting with embryonic stem cells and growing them on a mouse embryonic fibroblast layer," said Diane Hoffman-Kim, associate professor of medical science and of engineering. "If we could understand the elements of that gold standard, then we could try to make an off-the-shelf product." That potential product would be one that could advance stem cell therapies by taking mice out of the picture, said Hoffman-Kim, co-corresponding author with Eric Darling, also an associate professor of medical science and of engineering at Brown. The researchers, led by Hoffman-Kim's former doctoral student Cristina Lopez-Fagundo, describe their advance in the journal Acta Biomaterialia. It turns out the key elements of the mouse fibroblasts that they learned to mimic were the stiffness of the cells and the bumpiness of the bed they formed. By spreading a specially made material over the fibroblasts, the scientists created a rubbery mold. When they then used that to create beds with similar properties to a real one, they saw that that they could nurture and sustain comparable - though not identical - colonies of embryonic mouse stem cells on them. "This is not the gold standard, and we're not saying it is," Lopez-Fagundo said, "But it definitely makes up for the disadvantages of culturing with mouse embryonic fibroblasts."
Measuring the mimic The next set of experiments tested whether the mouse embryonic stem cell colonies reared on synthetic or gold-standard fibroblast beds would mature comparably well. The team was able to show that they could induce stem cells from either bed to differentiate into each of the three "germ layers," which are precursors to tissue: the endoderm, which becomes internal body structures such as the gastrointestinal tract; the mesoderm, which becomes many organ systems, including the heart; and the ectoderm, which becomes the nervous system.
More to come They also want to answer a more fundamental question: What is it about the stiffness of fibroblasts and the bumpiness of the layer they form that is so important in nurturing stem cell colonies? To learn that would be to reveal at least one of the many unknowns of stem cell biology. "Right now in the field we are still at a frontier in terms of culturing and using stem cells," Hoffman-Kim said. "It's not fully resolved yet."
Related Links Brown University The Clone Age - Cloning, Stem Cells, Space Medicine
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |