|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Zurich, Switzerland (SPX) Sep 22, 2015
Reverberated sound can make objects visible. The sonar is used in the shipping industry to acquire information about the seabed or shoals of fish, while gynaecologists use ultrasound images to study foetuses in the womb. Material testing procedures that regularly check for fissures in rail tracks or aircraft support structures are also based on ultrasound. Researchers at ETH Zurich have now developed a new type of acoustic imaging device which, rather than producing a photorealistic image of an entire object, shows only its contours and edges. "This type of measuring method delivers similar results to the edge detection filter in an image-processing software, which allows the outline of prominent photo objects to be identified with the click of the mouse," explains Chiara Daraio, Professor of Mechanics and Materials. Her method, however, is not software-based. Instead, it extracts the contour information during the acoustic measurement stage. To understand just how this acoustic edge detector works, it is important to know that sound waves are reflected off edges in a remarkable way: The acoustics near the edges is dominated by so-called evanescent waves. These waves have a much shorter wavelength than the incident sound waves that producte them. As the evanescent waves decay very fast as they propagate they can only be measured in close proximity to the edge. Methods to recover information contained in these waves have been developed in the past; however, the ETH researchers have now devised a new method that intensifies the evanescent waves and differentiates them from larger sound waves that are reflected in the "normal" way.
Resonance structure from a 3D printer "The resonance achieved by this structure intensifies the evanescent waves, and the successive chambers filter out the longer waves," explains Moleron. At the head of the structure, four microphones measure the transmitted sound. To create an outline image, the scientists bounced sound with a specific frequency off the object through a loudspeaker. They attached the polymer structure with the microphones to a robot very close to the object's surface, which enabled them to systematically scan the entire surface and generate the outline image from the measured sound data.
Identifying the most relevant aspects quickly "We have created an acoustic imaging method with which any unnecessary information isn't recorded," says ETH professor Daraio. "Outlines and edges are sufficient to classify objects based on their shape and size, for example, or to identify fissures or defects on the surface of materials," adds postdoc Moleron. The work conducted by the ETH researchers is currently just a proof of concept. The method still needs to be refined before it can be applied in practice. The scientists used sound at an audible frequency in their study. However, it would also be interesting to adapt the method for ultrasound that has shorter wavelengths. "Because the size of the polymer structure has to be adjusted to the operational wavelength, we need to miniaturise the structure. We now want to find out how far we can go with it," says Moleron. He is aiming to improve the acoustic imaging method for potential use in biological research or medicine. Moleron M, Daraio C: Acoustic metamaterial for subwavelength edge detection. Nature Communications, 25 August 2015, doi: 10.1038/ncomms9037
Related Links ETH Zurich Space Technology News - Applications and Research
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |