. 24/7 Space News .
TECH SPACE
Achieving magnetic order in two-dimensional materials
by Staff Writers
Uppsala, Sweden (SPX) May 30, 2017


Top-view of the DFT+U computed spin densities of the 2D supramolecular layer on the Au(111) substrate. The red iso-surfaces depict the positive spin density on the Mn atoms of the MnPc molecules and the green iso-surfaces the negative spin density on the Fe atoms of the FeFPc molecules. It is noteworthy that the spin densities on the ligand atoms are opposite to those on the metal centres.

Achieving magnetic order in low-dimensional systems consisting of only one or two dimensions has been a research goal for some time. In a new study published in the journal Nature Communications, Uppsala researchers show that magnetic order can be created in a two-dimensional chessboard lattice consisting of organometallic molecules that are only one atomic layer thick.

Magnetic order is a common phenomenon in three-dimensional materials, such as ferromagnetic order in iron bar magnets, where the magnetic moments on all iron atoms point in the same direction. In one or two dimensions, long-range magnetic order at temperatures higher than zero is not possible, however, according to the Mermin-Wagner theorem.

A possibility to achieve a magnetic phase without such long-range order was suggested by Kosterlitz and Thouless (Nobel Prize 2016), who predicted that a topological magnetic vortex in which the magnetic moments point in different directions and compensate each other could be realizable in a two-dimensional film.

Researchers Ehesan Ali and Peter Oppeneer from Uppsala University have now shown in an international collaboration with researchers from Switzerland and India that long-range magnetic order can be created in specially designed molecular systems consisting of iron and manganese phthalocyanine molecules. These molecules, which have great similarities to the iron porphyrins that are found in natural blood, were adsorbed on a gold metal surface.

The molecules do not react with gold atoms, but instead order themselves in a two-dimensional chessboard pattern consisting of alternating iron and manganese-based molecules. In this two-dimensional molecule lattice, the researchers could demonstrate magnetic order at low temperatures of just a few degrees Kelvin.

Through large-scale computer simulations, the Uppsala researchers were able to demonstrate a weak interaction between magnetic moments on the neighbouring molecule, which were transmitted through the gold electrons, the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.

Although the metal phthalocyanine molecules do not react chemically with the noble metal gold, the gold's electrons sense the spin magnetic moments on the molecule and transmit this information to the neighbouring molecule.

The researchers also detected that another fundamental physical interaction, the Kondo screening, counteracted the magnetic order. This occurred because the gold electrons changed their spin magnetic moments to neutralize the molecule's moment, something they didn't quite succeed in, and therefore long-range magnetic order was formed.

"It was amazing that our careful calculations could establish how magnetic order is formed in the molecular layer," says Peter Oppeneer, Professor at the Department of Physics and Astronomy at Uppsala University. "Our discovery can pave the way for studying thus far unknown quantum magnetic states, and contributes to the realization of molecular quantum spintronics."

Research paper

TECH SPACE
Using light to rearrange macroscopic structures
Onna, Japan (SPX) May 30, 2017
Traditional chemistry is immensely powerful when it comes to producing very diverse and very complex microscopic chemical molecules. But one thing out of reach is the synthesis of large structures up to the macroscopic scale, which would require tremendous amounts of chemicals as well as an elaborate and complicated technique. For this purpose, scientists rely instead on "self-assembling" ... read more

Related Links
Uppsala University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
DARPA Picks Design for Next-Generation Spaceplane

First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

MIT researchers engineer shape-shifting food

NASA honors Kennedy's space vision on 100th birthday

TECH SPACE
Dream Chaser Spacecraft Passes Major Milestone

NASA's Space Launch System Engine Testing Heats Up

Successful launch puts New Zealand in space race

Russia to create new Super-Heavy Class rocket after 2025

TECH SPACE
Preparations Continue Before Driving into 'Perseverance Valley'

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Schiaparelli landing investigation completed

TECH SPACE
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

TECH SPACE
Government space program spending reaches 62B dollars in 2016

New Target Date for Second Iridium NEXT Launch

New Horizons for Alexander Gerst

Satellite industry supports FCC proposal to reduce internet regulations for service providers

TECH SPACE
Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

Two simple building blocks produce complex 3-D material

Achieving magnetic order in two-dimensional materials

Using light to rearrange macroscopic structures

TECH SPACE
Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

Water forms superstructure around DNA, new study shows

TECH SPACE
NASA's Juno probe forces 'rethink' on Jupiter

A whole new Jupiter with first science results from Juno

First Juno Science Results Supported by University's Jupiter 'Forecast'

First results from Juno show cyclones and massive magnetism









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.