. 24/7 Space News .
TIME AND SPACE
Accessing high-spins in an artificial atom
by Staff Writers
Osaka, Japan (SPX) Aug 20, 2021

illustration only

Scientists from SANKEN at Osaka University demonstrated the readout of spin-polarized multielectron states composed of three or four electrons on a semiconductor quantum dot.

By making use of the spin filtering caused by the quantum Hall effect, the researchers were able to improve upon previous methods that could only easily resolve two electrons. This work may lead to quantum computers based on the multielectron high-spin states.

Despite the almost unimaginable increase in the power of computers over the last 75 years, even the fastest machines available today run on the same basic principle as the original room-sized collection of vacuum tubes: information is still processed by herding electrons through circuits based on their electric charge.

However, computer manufacturers are rapidly reaching the limit of how much they can readily achieve with charge alone, and new methods, such as quantum computing, are not ready yet to take their place. One promising approach is to utilize the intrinsic magnetic moment of electrons, called "spin," but controlling and measuring these values has proven to be very challenging.

Now, a team of researchers led by Osaka University showed how to read out the spin state of multiple electrons confined to a tiny quantum dot fabricated from gallium and arsenic. Quantum dots act like artificial atoms with properties that can be tuned by scientists by changing their size or composition. However, the gaps in energy levels generally becomes smaller and harder to resolve as the number of trapped electrons increases.

To overcome this, the team took advantage of a phenomenon called the quantum Hall effect. When electrons are confined to two dimensions and subjected to a strong magnetic field, their states become quantized, so their energy levels can only take on certain specific values.

"Previous spin readout methods could only handle one or two electrons, but using the quantum Hall effect, we were able to resolve up to four spin-polarized electrons," first author Haruki Kiyama says.

To prevent disturbances from thermal fluctuations, the experiments were performed at extremely low temperatures, around 80 millikelvin. "This readout technique may pave the way toward faster and higher-capacity spin-based quantum information processing devices with multielectron spin states," senior author Akira Oiwa says.

Research Report: "Preparation and readout of multielectron high-spin states in a gate-defined GaAs/AlGaAs quantum dot"


Related Links
Osaka University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
How ions get their electrons back
Vienna, Austria (SPX) Aug 20, 2021
Very unusual atomic states are produced at TU Wien: Ions are created by removing not just one but 20 to 40 electrons from each atom. These "highly charged ions" play an important role in current research. For a long time, people have been investigating what happens when such highly charged ions hit solid materials. This is important for many areas of application in materials research. Therefore it is crucial to know how the charge state of the ions change when they penetrate a material - but this ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Samsung announces $205 billion investment plan

Northrop Grumman set to launch 16th cargo delivery mission to ISS

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

NASA mulls how to dispose of International Space Station

TIME AND SPACE
Musk says next Moon landing will probably be sooner than in 2024

Boeing to remove Starliner from rocket, months-long delay expected

Boeing Starliner launch faces further delays

Hermeus fully-funded to flight with US Air Force Partnership

TIME AND SPACE
NASA's Ingenuity helicopter completes 12th Mars flight

Trio of orbiters shows small dust storms help dry out Mars

Aviation Week awards NASA's Ingenuity Mars Helicopter with laureate

Is Curiosity exploring surface sediments or lake deposits

TIME AND SPACE
Chinese astronauts to conduct extravehicular activities for second time

Mars mission outcomes to advance space research

Chinese rocket for Tianzhou-3 mission arrives at launch site

Tianhe astronauts use free time to watch ping-pong and exercise

TIME AND SPACE
Phantom Space acquires Micro Aerospace Solutions

Business growth scheme open to next group of space entrepreneurs

BlackSky to expand constellation with three back-to-back missions

Skykraft to begin launch of space-based air traffic management constellation

TIME AND SPACE
Facebook unveils virtual reality 'workrooms'

A technique to predict radiation risk during ISS Missions

DRCongo to review China Moly copper-cobalt mine deal

Department of Energy invests in novel research in high-performance algorithms

TIME AND SPACE
Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

Small force, big effect: How the planets could influence the sun

Astronomers find evidence of possible life-sustaining planet

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.