. 24/7 Space News .
STELLAR CHEMISTRY
A warp in the Milky Way linked to galactic collision
by Russ Bahorsky for UV News
Charlottesville VA (SPX) Feb 08, 2021

stock illustration only

When most of us picture the shape of the Milky Way, the galaxy that contains our own sun and hundreds of billions of other stars, we think of a central mass surrounded by a flat disc of stars that spiral around it. However, astronomers know that rather than being symmetrical, the disc structure is warped, more like the brim of a fedora, and that the warped edges are constantly moving around the outer rim of the galaxy.

"If you have ever seen the audience making a wave in a stadium, it's very similar to that concept," said Xinlun Cheng, an astronomy graduate student in the University of Virginia's College and Graduate School of Arts and Sciences.

"Each member of the audience stands up and then sits down at the correct time and in the correct order to create the wave as it goes around the stadium. That's exactly what stars in our galaxy are doing. Only in this case, as the wave is going around the galaxy's disk, the galaxy disk is also rotating around the center of the galaxy. In terms of the sports-fan analogy, it's as if the stadium itself is also rotating."

What caused that warp to occur has been the subject of debate. Some researchers suggest that the phenomenon is a result of the instability of the galaxy itself, while others assert that it is the remnant of a collision with another galaxy in the distant past.

A recent article published in The Astrophysical Journal by Cheng, who studies the movements of the stars, and his colleagues, Borja Anguiano, a post-doctoral research associate at UVA, and Steven Majewski, a professor in the College's Department of Astronomy, may finally put that debate to rest.

Using data from the Gaia space observatory, a satellite launched in 2013 by the European Space Agency to measure the positions, distances and motions of billions of stars and information from APOGEE, an infrared spectrograph developed by UVA to examine the chemical composition and motions of stars, astronomers now have the tools to observe the movements of the stars in the Milky Way with an unprecedented degree of accuracy.

"By combining information from the APOGEE instrument with information from the Gaia satellite, we're starting to understand how the different components of the galaxy are moving," said Anguiano, who is interested both in the movements of those components and what phenomena may have originally caused those movements to occur.

"It is now possible to characterize those movements with unprecedented accuracy because of the precision and statistical robustness of the huge catalogue of stars that has been probed by the Gaia satellite," Majewski explained.

"Meanwhile, our own large database of stellar chemistries generated by APOGEE gives us the unique ability to infer stellar ages. This allows us to explore how stars of different age participate in the warp and lets us zero in on when it was created. Knowing this, then, gives us an idea of why it was created."

Using those data, Cheng and his colleagues have developed a model that characterizes the parameters of the galactic warp, where it begins in the outer disk, how fast the warp is moving and the shape of the warp.

The model has helped them determine that the warp, which doesn't affect our own sun, but is passing our solar system now at speeds that allow it to make a full rotation around the galaxy every 450 million years, is not a result of the Milky Way's own internal mass.

Instead, it is the relic of gravitational tugging on the Milky Way's disk by the nearby passage of a satellite galaxy, possibly the Sagittarius Dwarf Spheroidal Galaxy, about 3 billion years ago.

"We can still see the disk of our galaxy shaking as a result," Anguiano said.

The data the team collected from the new tools available to astronomers may be just the beginning of a new wave of discoveries about our universe and how it came to be.

"We're entering an age in astronomy, especially in galactic astronomy, in which we are measuring the movement of the stars at such a level of precision that we can map their past orbital paths and start to understand how they may have been affected at earlier times and how other galaxies approaching our own interacted with stars as they were being born," Anguiano said.

"This level of precision has opened a new door to understanding our galaxy's past and how it was assembled."

The article, "Exploring the Galactic Warp through Asymmetries in the Kinematics of the Galactic Disk," by Cheng and his colleagues, was published in the December issue of The Astrophysical Journal.

Research paper


Related Links
University of Virginia
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
The Milky Way does the Wave
Washington DC (SPX) Jan 19, 2021
In results announced this week at the 237th Meeting of the American Astronomical Society, scientists from the Sloan Digital Sky survey present the most detailed look yet at the warp of our own Galaxy. "Our usual picture of a spiral galaxy is as a flat disk, thinner than a pancake, peacefully rotating around its center," said Xinlun Cheng of the University of Virginia, the lead author of the study. "But the reality is more complicated." Astronomers have known for decades that many spiral gala ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA completes spacewalk to finish power system upgrades

Calnetix Technologies Supplies Key Components for NASA's Next-Generation CO2 Removal System

For billionaire Jared Isaacman, the space tourism era begins

NASA will pay $500,000 for good ideas on food production in space

STELLAR CHEMISTRY
NASA proceeds with plans for second hot fire test

Businessman plans first all-civilian SpaceX flight to benefit St. Jude's hospital

Amazon's Bezos, latest tycoon to pursue his 'passion'

Tech billionaire Elon Musk says he's off Twitter 'for a while'

STELLAR CHEMISTRY
An innovative and non-destructive strategy to analyse material from Mars

Martian landslides caused by underground salts and melting ice?

Could the surface of Phobos reveal secrets of the Martian past

NASA, International Partners assess mission to map ice on Mars

STELLAR CHEMISTRY
Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

STELLAR CHEMISTRY
Astra to Become the First Publicly Traded Space Launch Company on NASDAQ via Merger with Holicity

Astroscale appoints new Director, GEO Spacecraft Systems

SpaceX launches fourth Starlink mission of 2021

SpaceX plans two communications satellite cluster launches in a day

STELLAR CHEMISTRY
Test paves way for new planetary radar

MDA extends satellite operations capability through contract award by the Canadian Space Agency

Earth will soon forever lose its 'second moon', astronomers say

Sony forecasts record profit after PlayStation 5 launch

STELLAR CHEMISTRY
SPIRou Stares at a Young Rebel: the AU Mic Planetary System

Could game theory help discover intelligent alien life

TESS discovers four exoplanets orbiting a nearby sun-like star

Peering inside the birthplaces of planets orbiting the smallest stars

STELLAR CHEMISTRY
Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.