. 24/7 Space News .
TECTONICS
A surprisingly soft mineral may control how Earth recycles rocks
by Paul Gabrielsen for UT News
Salt Lake City UT (SPX) Mar 10, 2022

A planet in constant motion

The geological events we see on the surface of the Earth as mountains, volcanoes and earthquakes are expressions of processes that are happening deep in our planet. Here on the Earth's crust, we're part of a conveyor belt system called plate tectonics where old crust at the margins of oceans are shoved back underground beneath continents, into the mantle.

As that crust goes deeper into the Earth, some of the minerals in the rocks change under the high temperatures and pressures of the mantle. New research from University of Utah geologist Lowell Miyagi and colleagues finds that one of these mantle minerals is among the weakest in the Earth's interior.

It's a tough mineral to study, but the research shows that it's around 1,000 times softer than much of the rest of the mantle. This is important for understanding what happens to slabs of rock as they sink into the Earth, which in turn teaches us about how and why earthquakes and volcanoes happen on the surface.

"We want to understand the mechanical properties of all these rocks and minerals because this is what determines how a slab will behave when it sinks into the Earth's interior," says Miyagi, associate professor of geology and geophysics.

The study is published in Nature and was funded by CDAC, the U.S. National Science Foundation, the German Science Foundation, the Bavarian Academy of Sciences and the European Union's Horizon 2020 program.

Plate tectonics above and below ground
The crust of the Earth is made of plates - large sections of crust that to our perception seem immovable and eternal. The plates that make up the oceans start as magma rising in the center of the plate at a place called, descriptively, the "mid-ocean ridge." That magma turns to basalt, similar to the black volcanic rock we see spouting from Hawaiian volcanoes.

As magma continues to rise, the plate spreads, pushing older basalt crust to the sides. Every plate runs into its neighbors and when it does ocean crust, which is denser than the crust on the continents, is pushed down into the mantle. It's a process called subduction.

After that, our best clues as to the fate of this recycled crust come from our readings of seismic waves, generated by earthquakes, that travel through the interior of the Earth.

"It's a bit like when you go to the doctor to image a baby with ultrasound," Miyagi says. "In this case the waves are bigger and the baby (the Earth) is bigger."

Seismic waves travel through different materials at different speeds, so when seismic waves show something unusual, geoscientists pay attention and naturally wonder- what's that made of? One of these notable unknowns is a feature at the boundary between the mantle and the core known as a Large Low Shear Velocity Province, or an LLSVP. There are two: one beneath the Pacific Ocean and one beneath Africa. And they're huge-the province beneath the Pacific is about 1,800 mi (3,000 km) wide - about the distance from Salt Lake City to Washington, D.C. And they're tall, possibly up to 600 mi (1,000 km) high. That's more than 100 times the height of Mount Everest.

(The edges of these provinces feature ultra-low velocity zones, or ULVZs, that featured in a previous U study here.)

Geoscientists previously thought that these provinces were hotter than the surrounding rock, and might be the source of some volcanic features like the Hawaiian Islands or the East African Rift Zone. "However more recently people think that these are a different kind of rock than the mantle," Miyagi says. "So the question is: What kind of rock is it, and how does it pile up there?"

Meet davemaoite
One candidate is the mineral davemaoite, with the chemical formula CaSiO3. It's part of a class of minerals called perovskites. Sinking slabs of rock are rich in davemaoite (up to 30%), and the rest of the mantle doesn't have much of it. So although it's important to know the mechanical properties of davemaoite, like how it bends or stretches in the mantle, to know how the Earth recycles material from the surface into the deep interior, it's been a tough mineral to study. Why?

"It is very difficult to study because it cannot survive to room pressure," Miyagi says. "It has to be made at high temperature and pressure. If you take the pressure and temperature away it becomes a glass." The only davemaoite found at the surface thus far, reported recently in 2021, was trapped inside a diamond, which maintained the high pressure needed to keep its atomic structure together.

So how did the research team, which included scientists from Utah, California, Germany and the UK, manage to study the mechanical properties of davemaoite? By squeezing powdered CaSiO3 under 30 gigapascals of pressure (19 times the pressure of the deepest point of the ocean) between two diamond anvils and heating it to 1600 F (1150 K). They had to build a window into the apparatus just to let an X-ray beam through to analyze the atomic structure of the resulting crystal.

1,000 times softer
After analyzing the structure of davemaoite, the researchers modeled its strength and behavior when being stretched or pulled. Davemaoite, they found, is about 1,000 times softer than the rest of the mantle.

What does that mean, though? The viscosity of a material, or its ability to flow, is measured in several different units, including Pascal seconds. Something very thin, like water, is about 0.001 Pascal seconds, while something thicker like peanut butter is around 200 Pascal seconds. The Earth's lower mantle comes in at around 1021 Pascal seconds-a LOT thicker than peanut butter. But if the mantle is peanut butter, then davemaoite is maple syrup. And anyone who puts both of those on their pancakes knows that the difference between the two is significant.

So, let's walk through how this difference affects a slab of rock sinking into the Earth. At a depth of around 340 mi (550 km), the temperature and pressure forms davemaoite in much of the slab, suddenly making it very weak.

"Those weak parts of the slab could then delaminate or peel away from the rest of the slab and then fall away into the mantle," Miyagi says. "We have seismic images that look like parts of slabs have separated and fallen away."

If this dense material, rich in davemaoite, separates and sinks, it's plausible that it could form a Large Low Shear Velocity Province, Miyagi says. "This would occur over long time periods of piling up this material by dripping these upside-down plumes to the base of the mantle."

There's a lot still to explore about how the properties of the minerals inside the Earth affect how things move around. "Knowing the mechanical properties of this material gives us a better understanding of how slabs subduct and behave in the Earth's interior," Miyagi says. "So, this can give us a better understanding of the large-scale processes that drive plate tectonics and thus earthquakes and volcanoes."

Research Report: "Weak cubic CaSiO3 perovskite in the Earth's mantle"


Related Links
University of Utah
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
New study in earth science frontiers explains the driving force behind continental drift
Wuhan, China (SPX) Mar 01, 2022
The breakup of the South Atlantic region, which led to the separation of the African and South American continents, is a well-known global phenomenon. In fact, the famous continental drift theory put forth by the German climatologist, Alfred Wegener, is based on the South Atlantic breakup. According to this theory, the continental plate floats on the oceanic crust and, powered by the Earth's rotation and tidal energy, drifts relative to it. However, the driving forces behind these continental plate move ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
'TechWorks' brings dreams of Jordan inventors to life

How to reach a tumbling target in space

NASA exploring ways to keep ISS afloat without Russian help: official

Astronaut Matthias Maurer marks his first 100 days in space

TECTONICS
Russia stops deliveries of rocket engines to US, Roscosmos Head Says

First Platforms are Retracted Ahead of Artemis I First Rollout to Launch Pad

SpaceX launches 47 Starlink satellites from Florida

NASA Announces Launch Options for 2022 Student Launch Competition

TECTONICS
Moon and Mars superoxides for oxygen farming

A River Runs Through It: Onward to the Delta

Sols 3403-3404: Tiptoe to the Pediment

How scientists designed the aerodynamic configuration of Mars ascent vehicles?

TECTONICS
China's space station to host 6 astronauts by end of 2022

Tiangong scheduled for completion this year

China establishes deep space exploration laboratory

China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

TECTONICS
AST SpaceMobile announces launch deal with SpaceX

SpaceX plans another Starlink launch as Ukraine uses the service during conflict

Satellite operator OneWeb suspends Baikonur launches

Airbus Ventures invests in CesiumAstro's Series B

TECTONICS
Scientists, undergraduates team up to protect astronauts from radiation

Amid NFT boom, artists worry about climate costs

The untapped nitrogen reservoir

Tiny switches give solid-state LiDAR record resolution

TECTONICS
"Seafloor fertilizer factory" helped breathe life into Earth

Expedition to highest active volcano unearths clues about life on other worlds

Astronomers discover largest molecule yet in a planet-forming disc

Microscopic view on asteroid collisions could help us understand planet formation

TECTONICS
NASA begins assembly of Europa Clipper

NASA starts building Europa Clipper to investigate icy, ocean moon of Jupiter

New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.