. 24/7 Space News .
CARBON WORLDS
A step towards increasing CO2 uptake in plants
by Staff Writers
Copenhagen, Denamrk (SPX) Nov 19, 2021

Plant cells inside a leaf seen through a microscope.

Imagine being able to grow plants that could absorb even more CO2 from Earth's atmosphere and thereby help solve the world's climate problems. Humans have selected, bred and optimized plants to increase food production and ensure for our survival for thousands of years.

But the most important and fundamental function of life on Earth - photosynthesis - has not been relevant with regards to plant selection or breeding until now, an age when greenhouse gas emissions from human activities threaten our planet. With new technologies at hand, scientists around the world are now working to understand the internal processes of plants that drive photosynthesis.

In a new study published in the scientific journal PNAS [https://doi.org/10.1073/pnas.2113934118], researchers from the University of Copenhagen's Department of Plant and Environmental Sciences have just discovered that a group of proteins in plant leaf cells, called CURT1, plays a much more important role in photosynthesis than once thought.

"We have discovered that CURT1 proteins control a plant's development of green leaves already from the seed stage. Thus, the proteins have a major influence on how effectively photosynthesis is established," explains Associate Professor Mathias Pribil, the study's lead author.

Proteins that kickstart photosynthesis
CURT1 proteins were previously believed to play a more modest role and only be present in fully-developed leaves. But using state-of-the-art Imaging techniques (photography and computer equipment), the researchers zoomed 30,000x in on the growth of a series of experimental thale cress (Arabidopsis) plants. This allowed them to study the plants at a molecular level. The researchers could see that CURT1 proteins were present from the earliest stages of their plants' lives.

"Emerging from the soil is a critical moment for the plant, as it is struck by sunlight and rapidly needs to get photosynthesis going to survive. Here we can see that CURT1 proteins coordinate processes that set photosynthesis in motion and allow the plant to survive, something we didn't know before," explains Mathias Pribil.

Photosynthesis takes place in chloroplasts, 0.005 mm long elliptical bodies in plant cells that are a kind of organ within the cells of a plant leaf. Within each chloroplast, a membrane harbours proteins and the other functions that make photosynthesis possible.

"CURT1 proteins control the shape of this membrane, making it easier for other proteins in a plant cell to move around and perform important tasks surrounding photosynthesis, depending on how the environment around the plant changes. This could be to repair light harvesting protein complexes when the sunlight is intense or to turn up a chloroplast's ability to harvest light energy when sunlight is weak," explains Pribil.

Improved CO2 uptake in the future
The new finding provides deeper insight into Earth's most important biochemical reaction. Indeed, without plants, neither animals nor humans would exist on our planet. Thus far, the result only applies to the thale cress plant, but Pribil would be "very surprised" if the importance of CURT1 proteins for photosynthesis didn't extend to other plants as well.

"This is an important step on the way to understanding all of the components that control photosynthesis. The question is whether we can use this new knowledge to improve the CURT1 protein complex in plants in general, so as to optimize photosynthesis," says Mathias Pribil, who adds:

"Much of our research revolves around making photosynthesis more efficient so that plants can absorb more CO2. Just as we have selected and bred the best crops throughout the history of agriculture, it is now about helping nature become the best possible CO2 absorber," says Mathias Pribil.

Research Report: "Curvature thylakoid 1 proteins modulate prolamellar body morphology and promote organized thylakoid biogenesis in Arabidopsis thaliana"


Related Links
University of Copenhagen - Faculty of Science
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Graphene-like 2D material leverages quantum effects for ultra-low friction
Toronto, Canada (SPX) Nov 19, 2021
A team of researchers from University of Toronto Engineering and Rice University have reported the first measurements of the ultra-low-friction behaviour of a material known as magnetene. The results point the way toward strategies for designing similar low-friction materials for use in a variety of fields, including tiny, implantable devices. Magnetene is a 2D material, meaning it is composed of a single layer of atoms. In this respect, it is similar to graphene, a material that has been studied ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Crew operations aboard Space Station return to normal

Moonshot: Japan recruits first new astronauts in 13 years

First all-private space station mission to include two dozen experiments

NASA receives 11th consecutive clean financial audit opinion

CARBON WORLDS
Latest Vega launch paves way for Vega-C

Pangea Aerospace hot fire tests the first MethaLox aerospike engine in the world

PLD Space exhibits the first privately-developed Spanish rocket

Arianespace to launch Australian satellite Optus-11 with Ariane 6

CARBON WORLDS
NASA's Perseverance captures challenging flight by Mars Helicopter

Curiosity continues to dine on Zechstein drill fines

Twin of NASA's Perseverance Mars rover begins terrain tests

Life on Mars search could be misled by false fossils

CARBON WORLDS
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

CARBON WORLDS
Satellite operator Telesat goes public

CGI selected for GSA's ASTRO space and development IDIQ contract

SES orders 2 new sats for Prime TV Neighbourhood serving 118 million homes

Bezos' Blue Origin hires lobbyist after 'Space Tax' proposed

CARBON WORLDS
DARPA focusing on biomanufacturing to B-SURE

Salvaging rare earth elements from electronic waste

Researchers recreate deep-Earth conditions to see how iron copes with extreme stress

Bacteria may be key to sustainably extracting earth elements for tech

CARBON WORLDS
The worlds next door: Looking for habitable planets around Alpha Centauri

Alien organisms - hitchhikers of the galaxy

Discovering exoplanets using artificial intelligence

New model will help find Earth-like Exoplanets

CARBON WORLDS
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.