. 24/7 Space News .
CHIP TECH
A quantum of solid
by Staff Writers
Vienna, Austria (SPX) Feb 03, 2020

Scientists from Vienna, Kahan Dare (left) and Manuel Reisenbauer (right) working on the experiment that cooled a levitated nanoparticle to its motional quantum groundstate.

It is well known that quantum properties of individual atoms can be controlled and manipulated by laser light. Even large clouds of hundreds of millions of atoms can be pushed into the quantum regime, giving rise to macroscopic quantum states of matter such as quantum gases or Bose-Einstein condensates, which nowadays are also widely used in quantum technologies.

An exciting next step is to extend this level of quantum control to solid state objects. In contrast to atomic clouds, the density of a solid is a billion times higher and all atoms are bound to move together along the object's center of mass. In that way, new macroscopic quantum states involving large masses should become possible.

However, entering this new regime is not at all a straightforward endeavour. A first step for achieving such quantum control is to isolate the object under investigation from influences of the environment and to remove all thermal energy - by cooling it down to temperatures very close to absolute zero (-273.15C) such that quantum mechanics dominates the particle's motion. To show this the researchers chose to experiment with a glass bead approximately a thousand times smaller than a typical grain of sand and containing a few hundred million atoms.

Isolation from the environment is achieved by optically trapping the particle in a tightly focused laser beam in high vacuum, a trick that was originally introduced by Nobel laureate Arthur Ashkin many decades ago and that is also used for isolating atoms.

"The real challenge is for us to cool the particle motion into its quantum ground state. Laser cooling via atomic transitions is well established and a natural choice for atoms, but it does not work for solids", says lead-author Uros Delic from the University of Vienna.

For this reason, the team has been working on implementing a laser-cooling method that was proposed by Austrian physicist Helmut Ritsch at the University of Innsbruck and, independently, by study co-author Vladan Vuletic and Nobel laureate Steven Chu.

They had recently announced a first demonstration of the working principle, "cavity cooling by coherent scattering", however they were still limited to operating far away from the quantum regime.

"We have upgraded our experiment and are now able not only to remove more background gas but also to send in more photons for cooling", says Delic. In that way, the motion of the glass bead can be cooled straight into the quantum regime.

"It is funny to think about this: the surface of our glass bead is extremely hot, around 300C, because the laser heats up the electrons in the material. But the motion of the center of mass of the particle is ultra-cold, around 0.00001C away from absolute zero, and we can show that the hot particle moves in a quantum way."

The researchers are excited about the prospects of their work. The quantum motion of solids has also been investigated by other groups all around the world, along with the Vienna team. Thus far, experimental systems were comprised of nano- and micromechanical resonators, in essence drums or diving boards that are clamped to a rigid support structure.

"Optical levitation brings in much more freedom: by changing the optical trap - or even switching it off - we can manipulate the nanoparticle motion in completely new ways", says Nikolai Kiesel, co-author and Assistant Professor at the University of Vienna.

Several schemes along these lines have been proposed, amongst others by Austrian-based physicists Oriol Romero-Isart and Peter Zoller at Innsbruck, and may now become possible. For example, in combination with the newly achieved motional ground state the authors expect that this opens new opportunities for unprecedented sensing performance, the study of fundamental processes of heat engines in the quantum regime, as well as the study of quantum phenomena involving large masses.

"A decade ago we started this experiment motivated by the prospect of a new category of quantum experiments. We finally have opened the door to this regime."

Research Report: "Cooling of a Levitated Nanoparticle to the Motional Quantum Ground Stat"


Related Links
University Of Vienna
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
NRL researchers' golden touch enhances quantum technology
Washington DC (SPX) Jan 30, 2020
Scientists at the U.S. Naval Research Laboratory discovered a new platform for quantum technologies by suspending two-dimensional (2-D) crystals over pores in a slab of gold. This new approach may help develop new materials for secure communication and sensing technologies based on the unique laws of physics at the atomic levels. "We never expected these atomically thin materials could influence the ordering of all of the atoms in such a relatively large slab of gold," said Jeremy Robinson, a mate ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Getting around the Solar System

DLR 2020 - research for climate, mobility and the energy transition

New research launching to station aboard Northrop Grumman's 13th Resupply Mission

Voyager 2 engineers working to restore normal operations

CHIP TECH
Rocket Lab successfully launches U.S. spy satellite

India plans to send 50 satellite launch vehicles into orbit within next 5 years

Elon Musk drops surprise techno track

SpaceX Falcon 9 launches fourth batch of 60 Starlink satellites

CHIP TECH
Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

Nine finalists chosen in Mars 2020 rover naming contest

CHIP TECH
China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

China's space-tracking vessels back from missions

CHIP TECH
Space science investment generates income and creates jobs

Northrop Grumman breaks ground for expanded satellite manufacturing facilities in Gilbert, Arizona

US sees record year for private space sector in 2020

Xplore and Nanoracks partner to commercialize deep space

CHIP TECH
Can wood construction transform cities from carbon source to carbon vault

Sustainable 3D-printed super magnets

"Breakthrough" 3D-printed rocket engine tests completed in Fife, Scotland

Two satellites just avoided a head-on smash. How close did they come to disaster?

CHIP TECH
To make amino acids, just add electricity

AI could deceive us as much as the human eye does in the search for extraterrestrials

NESSI comes to life at Palomar Observatory

For hottest planet, a major meltdown, study shows

CHIP TECH
Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.