. 24/7 Space News .
CHIP TECH
A quantum internet is closer to reality, thanks to this switch
by Kayla Wiles for Purdue News
West Lafayette IN (SPX) Mar 03, 2021

Using a programmable wavelength-selective switch can help increase the number of users in a quantum network without increasing photon loss from the switching device, a new study shows. (Purdue University image/Navin Lingaraju)

When quantum computers become more powerful and widespread, they will need a robust quantum internet to communicate.

Purdue University engineers have addressed an issue barring the development of quantum networks that are big enough to reliably support more than a handful of users.

The method, demonstrated in a paper published in Optica, could help lay the groundwork for when a large number of quantum computers, quantum sensors and other quantum technology are ready to go online and communicate with each other.

The team deployed a programmable switch to adjust how much data goes to each user by selecting and redirecting wavelengths of light carrying the different data channels, making it possible to increase the number of users without adding to photon loss as the network gets bigger.

If photons are lost, quantum information is lost - a problem that tends to happen the farther photons have to travel through fiber optic networks.

"We show a way to do wavelength routing with just one piece of equipment - a wavelength-selective switch - to, in principle, build a network of 12 to 20 users, maybe even more," said Andrew Weiner, Purdue's Scifres Family Distinguished Professor of Electrical and Computer Engineering. "Previous approaches have required physically interchanging dozens of fixed optical filters tuned to individual wavelengths, which made the ability to adjust connections between users not practically viable and photon loss more likely."

Instead of needing to add these filters each time that a new user joins the network, engineers could just program the wavelength-selective switch to direct data-carrying wavelengths over to each new user - reducing operational and maintenance costs as well as making a quantum internet more efficient.

The wavelength-selective switch also can be programmed to adjust bandwidth according to a user's needs, which has not been possible with fixed optical filters. Some users may be using applications that require more bandwidth than others, similarly to how watching shows through a web-based streaming service uses more bandwidth than sending an email.

For a quantum internet, forming connections between users and adjusting bandwidth means distributing entanglement, the ability of photons to maintain a fixed quantum mechanical relationship with one another no matter how far apart they may be to connect users in a network. Entanglement plays a key role in quantum computing and quantum information processing.

"When people talk about a quantum internet, it's this idea of generating entanglement remotely between two different stations, such as between quantum computers," said Navin Lingaraju, a Purdue Ph.D. student in electrical and computer engineering. "Our method changes the rate at which entangled photons are shared between different users. These entangled photons might be used as a resource to entangle quantum computers or quantum sensors at the two different stations."

Purdue researchers performed the study in collaboration with Joseph Lukens, a research scientist at Oak Ridge National Laboratory. The wavelength-selective switch that the team deployed is based on similar technology used for adjusting bandwidth for today's classical communication.

The switch also is capable of using a "flex grid," like classical lightwave communications now uses, to partition bandwidth to users at a variety of wavelengths and locations rather than being restricted to a series of fixed wavelengths, each of which would have a fixed bandwidth or information carrying capacity at fixed locations.

"For the first time, we are trying to take something sort of inspired by these classical communications concepts using comparable equipment to point out the potential advantages it has for quantum networks," Weiner said.

The team is working on building larger networks using the wavelength-selective switch. The work was funded by the U.S. Department of Energy, the National Science Foundation and Oak Ridge National Laboratory.

Adaptive bandwidth management for entanglement distribution in quantum networks

Research paper


Related Links
Electrical and Computer Engineering at Purdue University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Drought hits Taiwan drive to plug global chip shortage
Taipei (AFP) Feb 25, 2021
Taiwan's drive to plug a global shortage of microchips has hit a snag - a lack of water for its foundries caused by a drought. Taiwanese high-tech chip foundries are some of the world's biggest and most advanced, and European car manufacturers have been reaching out to Taipei for help. Semiconductor shortages, caused by supply chain priorities changing because of the coronavirus pandemic, have forced some major manufacturers to suspend production lines. Taiwan has said it will try to ramp up ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA, Boeing update Starliner orbital flight test date

Astronautics training for space professionals

Cygnus resupply ship bolted to ISS Unity Module

NASA's Perseverance rover beams back spectacular new images

CHIP TECH
Benchmark Space Systems and Orbit Fab Breaking Ground on Mobile Refueling Stations in Space

NASA delays new test-firing of moon rocket

Russia plans at least 10 launches from Baikonur in 2021

DLR ready to test first upper stage for Ariane 6

CHIP TECH
Martian moons have a common ancestor

Tianwen 1 probe enters preset parking orbit

Life from Earth could temporarily survive on Mars

NASA's Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

CHIP TECH
China explores space with self-reliance, open mind

China begins assembly of Long March 5B to launch space station core

Xi lauds China's progress in space missions

Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

CHIP TECH
SpaceX plans 20th Starlink launch Sunday evening from Florida

'Space Bridge' across the world will help UK and Australia get ahead in global space race

Business support scheme to boost UK space industry has lift off

Advanced Manufacturing Supercluster Funds Deployment Of Flexible Automation Solutions

CHIP TECH
Polymer film protects from electromagnetic radiation, signal interference

Researchers grow artificial hairs with clever physics trick

Brand new findings on fire safety in space

Engineering the boundary between 2D and 3D materials

CHIP TECH
Big galaxies steal star-forming gas from their smaller neighbours

The Milky Way may be swarming with planets with oceans and continents like here on Earth

On the quest for other Earths

The search for life beyond Earth

CHIP TECH
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.