. 24/7 Space News .
ICE WORLD
A plunge in incoming sunlight may have triggered 'snowball earths'
by Jennifer Chu for MIT News
Boston MA (SPX) Jul 29, 2020

A global snap freeze might just take a short but large decrease in solar radiation. The amount of solar radiation doesn't have to drop to a particular threshold point; as long as the decrease in incoming sunlight occurs faster than a critical rate, a temporary glaciation, or Snowball Earth, will follow.

At least twice in Earth's history, nearly the entire planet was encased in a sheet of snow and ice. These dramatic "Snowball Earth" events occurred in quick succession, somewhere around 700 million years ago, and evidence suggests that the consecutive global ice ages set the stage for the subsequent explosion of complex, multicellular life on Earth.

Scientists have considered multiple scenarios for what may have tipped the planet into each ice age. While no single driving process has been identified, it's assumed that whatever triggered the temporary freeze-overs must have done so in a way that pushed the planet past a critical threshold, such as reducing incoming sunlight or atmospheric carbon dioxide to levels low enough to set off a global expansion of ice.

But MIT scientists now say that Snowball Earths were likely the product of "rate-induced glaciations." That is, they found the Earth can be tipped into a global ice age when the level of solar radiation it receives changes quickly over a geologically short period of time. The amount of solar radiation doesn't have to drop to a particular threshold point; as long as the decrease in incoming sunlight occurs faster than a critical rate, a temporary glaciation, or Snowball Earth, will follow.

These findings, published in the Proceedings of the Royal Society A, suggest that whatever triggered the Earth's ice ages most likely involved processes that quickly reduced the amount of solar radiation coming to the surface, such as widespread volcanic eruptions or biologically induced cloud formation that could have significantly blocked out the sun's rays.

The findings may also apply to the search for life on other planets. Researchers have been keen on finding exoplanets within the habitable zone - a distance from their star that would be within a temperature range that could support life.

The new study suggests that these planets, like Earth, could also ice over temporarily if their climate changes abruptly. Even if they lie within a habitable zone, Earth-like planets may be more susceptible to global ice ages than previously thought.

"You could have a planet that stays well within the classical habitable zone, but if incoming sunlight changes too fast, you could get a Snowball Earth," says lead author Constantin Arnscheidt, a graduate student in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS). "What this highlights is the notion that there's so much more nuance in the concept of habitability."

Arnscheidt has co-authored the paper with Daniel Rothman, EAPS professor of geophysics, and co-founder and co-director of the Lorenz Center.

A runaway snowball
Regardless of the particular processes that triggered past glaciations, scientists generally agree that Snowball Earths arose from a "runaway" effect involving an ice-albedo feedback: As incoming sunlight is reduced, ice expands from the poles to the equator.

As more ice covers the globe, the planet becomes more reflective, or higher in albedo, which further cools the surface for more ice to expand. Eventually, if the ice reaches a certain extent, this becomes a runaway process, resulting in a global glaciation.

Global ice ages on Earth are temporary in nature, due to the planet's carbon cycle. When the planet is not covered in ice, levels of carbon dioxide in the atmosphere are somewhat controlled by the weathering of rocks and minerals.

When the planet is covered in ice, weathering is vastly reduced, so that carbon dioxide builds up in the atmosphere, creating a greenhouse effect that eventually thaws the planet out of its ice age.

Scientists generally agree that the formation of Snowball Earths has something to do with the balance between incoming sunlight, the ice-albedo feedback, and the global carbon cycle.

"There are lots of ideas for what caused these global glaciations, but they all really boil down to some implicit modification of solar radiation coming in," Arnscheidt says. "But generally it's been studied in the context of crossing a threshold."

He and Rothman had previously studied other periods in Earth's history where the speed, or rate at which certain changes in climate occurred had a role in triggering events, such as past mass extinctions.

"In the course of this exercise, we realized there was an immediate way to make a serious point by applying such ideas of rate-induced tipping, to Snowball Earth and habitability," Rothman says.

"Be wary of speed"
The researchers developed a simple mathematical model of the Earth's climate system that includes equations to represent relations between incoming and outgoing solar radiation, the surface temperature of the Earth, the concentration of carbon dioxide in the atmosphere, and the effects of weathering in taking up and storing atmospheric carbon dioxide. The researchers were able to tune each of these parameters to observe which conditions generated a Snowball Earth.

Ultimately, they found that a planet was more likely to freeze over if incoming solar radiation decreased quickly, at a rate that was faster than a critical rate, rather than to a critical threshold, or particular level of sunlight.

There is some uncertainty in exactly what that critical rate would be, as the model is a simplified representation of the Earth's climate. Nevertheless, Arnscheidt estimates that the Earth would have to experience about a 2 percent drop in incoming sunlight over a period of about 10,000 years to tip into a global ice age.

"It's reasonable to assume past glaciations were induced by geologically quick changes to solar radiation," Arnscheidt says.

The particular mechanisms that may have quickly darkened the skies over tens of thousands of years is still up for debate. One possibility is that widespread volcanoes may have spewed aerosols into the atmosphere, blocking incoming sunlight around the world.

Another is that primitive algae may have evolved mechanisms that facilitated the formation of light-reflecting clouds. The results from this new study suggest scientists may consider processes such as these, that quickly reduce incoming solar radiation, as more likely triggers for Earth's ice ages.

"Even though humanity will not trigger a snowball glaciation on our current climate trajectory, the existence of such a 'rate-induced tipping point' at the global scale may still remain a cause for concern," Arnscheidt points out.

"For example, it teaches us that we should be wary of the speed at which we are modifying Earth's climate, not just the magnitude of the change. There could be other such rate-induced tipping points that might be triggered by anthropogenic warming. Identifying these and constraining their critical rates is a worthwhile goal for further research."


Related Links
MIT News Office
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
First comprehensive documentation of glacial retreat in the alps
Nuremberg, Germany (SPX) Jul 13, 2020
A research team from Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) conducted the first study of area and elevation changes for all Alpine glaciers over a period of 14 years. This involved comparing three-dimensional terrain models obtained from the German radar satellite mission TanDEM-X and the German-US Shuttle Radar Topography Mission (SRTM) between 2000 and 2014. The team combined the elevation models with optical images from NASA's Landsat satellites. They found that the Alps have l ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Duckweed is an incredible, radiation-fighting astronaut food

Spacewalk on Tuesday will conclude space station power upgrade

NASA scientist over the Moon with homegrown radish research

Astronauts conclude third spacewalk on historic SpaceX mission

ICE WORLD
Arianespace to launch three satellites towards Geostationary Orbit on July 28

NASA Teams Load Artemis I Rocket Hardware on Barge for Trip to Kennedy

Two US astronauts to come home on SpaceX ship on August 2

Rocket to lift Mars probe moved to launch pad

ICE WORLD
Perseverance microphones fulfill long campaign to hear sounds from Mars

ESA tunes up Mars rover for challenges ahead

China launches Mars probe in space race with US

Emirates launches first Mars probe with help from UC Berkeley

ICE WORLD
China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

ICE WORLD
British defense ministry, Airbus finalize $628.5M contract for Skynet upgrade

Airbus expands its SpaceDataHighway with second satellite

China launches new commercial telecommunication satellite

Satellite for US Air Force launched as part of L3Harris' Responsive Constellation Contract

ICE WORLD
Scientists discover how deep-sea, ultra-black fish disappear

Microsoft sees growth amid pandemic computing demands

Coronavirus boon for Poland's vibrant gaming sector

Loft Orbital selects LeoStella to supply satellites for Space Infrastructure-as-a-Service

ICE WORLD
Exoplanet rediscovery is step toward finding habitable planets

First ever image of a multi-planet system around a sun-like star captured by ESO telescope

Could mini-Neptunes be irradiated ocean planets

Astronomers track down 'lost' worlds spotted but unconfirmed by TESS survey

ICE WORLD
NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.