. | . |
A new way to find better battery materials by Staff Writers Boston MA (SPX) Mar 30, 2018
A new approach to analyzing and designing new ion conductors - a key component of rechargeable batteries - could accelerate the development of high-energy lithium batteries, and possibly other energy storage and delivery devices such as fuel cells, researchers say. The new approach relies on understanding the way vibrations move through the crystal lattice of lithium ion conductors and correlating that with the way they inhibit ion migration. This provides a way to discover new materials with enhanced ion mobility, allowing rapid charging and discharging. At the same time, the method can be used to reduce the material's reactivity with the battery's electrodes, which can shorten its useful life. These two characteristics - better ion mobility and low reactivity - have tended to be mutually exclusive. The new concept was developed by a team led by W.M. Keck Professor of Energy Yang Shao-Horn, graduate student Sokseiha Muy, recent graduate John Bachman PhD '17, and Research Scientist Livia Giordano, along with nine others at MIT, Oak Ridge National Laboratory, and institutions in Tokyo and Munich. Their findings were reported in the journal Energy and Environmental Science. The new design principle has been about five years in the making, Shao-Horn says. The initial thinking started with the approach she and her group have used to understand and control catalysts for water splitting, and applying it to ion conduction - the process that lies at the heart of not only rechargeable batteries, but also other key technologies such as fuel cells and desalination systems. While electrons, with their negative charge, flow from one pole of the battery to the other (thus providing power for devices), positive ions flow the other way, through an electrolyte, or ion conductor, sandwiched between those poles, to complete the flow. Typically, that electrolyte is a liquid. A lithium salt dissolved in an organic liquid is a common electrolyte in today's lithium-ion batteries. But that substance is flammable and has sometimes caused these batteries to catch fire. The search has been on for a solid material to replace it, which would eliminate that issue. A variety of promising solid ion conductors exist, but none is stable when in contact with both the positive and negative electrodes in lithium-ion batteries, Shao-Horn says. Therefore, seeking new solid ion conductors that have both high ion conductivity and stability is critical. But sorting through the many different structural families and compositions to find the most promising ones is a classic needle in a haystack problem. That's where the new design principle comes in. The idea is to find materials that have ion conductivity comparable to that of liquids, but with the long-term stability of solids. The team asked, "What is the fundamental principle? What are the design principles on a general structural level that govern the desired properties?" Shao-Horn says. A combination of theoretical analysis and experimental measurements has now yielded some answers, the researchers say. "We realized that there are a lot of materials that could be discovered, but no understanding or common principle that allows us to rationalize the discovery process," says Muy, the paper's lead author. "We came up with an idea that could encapsulate our understanding and predict which materials would be among the best." The key was to look at the lattice properties of these solid materials' crystalline structures. This governs how vibrations such as waves of heat and sound, known as phonons, pass through materials. This new way of looking at the structures turned out to allow accurate predictions of the materials' actual properties. "Once you know [the vibrational frequency of a given material], you can use it to predict new chemistry or to explain experimental results," Shao-Horn says. The researchers observed a good correlation between the lattice properties determined using the model and the lithium ion conductor material's conductivity. "We did some experiments to support this idea experimentally" and found the results matched well, she says. They found, in particular, that the vibrational frequency of lithium itself can be fine-tuned by tweaking its lattice structure, using chemical substitution or dopants to subtly change the structural arrangement of atoms. The new concept can now provide a powerful tool for developing new, better-performing materials that could lead to dramatic improvements in the amount of power that could be stored in a battery of a given size or weight, as well as improved safety, the researchers say. Already, they used the method to find some promising candidates. And the techniques could also be adapted to analyze materials for other electrochemical processes such as solid-oxide fuel cells, membrane based desalination systems, or oxygen-generating reactions.
Mapping battery materials with atomic precision Berkeley CA (SPX) Mar 21, 2018 Lithium-ion batteries are widely used in home electronics and are now being used to power electric vehicles and store energy for the power grid. But their limited number of recharge cycles and tendency to degrade in capacity over their lifetime have spurred a great deal of research into improving the technology. An international team led by researchers from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) used advanced techniques in electron microscopy to show h ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |