. 24/7 Space News .
EARTH OBSERVATION
A new way of looking at the Earth's interior
by Felix Wursten
Zurich, Switzerland (SPX) Oct 22, 2020

stock illustration only

There are places that will always be beyond our reach. The Earth's interior is one of them. But we do have ways of gaining an understanding of this uncharted world. Seismic waves, for instance, allow us to put important constraints about the structure of our planet and the physical properties of the materials hidden deep within it.

Then there are the volcanic rocks that emerge in some places on the Earth's surface from deep within and provide important clues about the chemical composition of the mantle. And finally there are lab experiments that can simulate the conditions of the Earth's interior on a small scale.

A new publication by Motohiko Murakami, Professor of Experimental Mineral Physics, and his team was featured recently in the journal PNAS and shows just how illuminating such experiments can be. The researchers' findings suggest that many geoscientists' understanding of the Earth's interior may be too simplistic.

Dramatic change
Below the Earth's crust, which is only a few kilometres thick, lies its mantle. Also made of rock, this surrounds the planet's core, which begins some 2,900 kilometres below us. Thanks to seismic signals, we know that a dramatic change occurs in the mantle at a depth of around 660 kilometres: this is where the upper mantle meets the lower mantle and the mechanical properties of the rock begin to differ, which is why the propagation velocity of seismic waves changes dramatically at this border.

What is unclear is whether this is merely a physical border or whether the chemical composition of the rock also changes at this point. Many geoscientists presume that the Earth's mantle as a whole is composed relatively consistently of magnesium-rich rock, which in turn has a composition similar to that of peridotite rock found on the Earth's surface. These envoys from the upper mantle, which arrive on the Earth's surface by way of events like volcanic eruptions, exhibit a magnesium-silicon ratio of ~1.3.

"The presumption that the composition of the Earth's mantle is more or less homogeneous is based on a relatively simple hypothesis," Murakami explains. "Namely that the powerful convection currents within the mantle, which also drive the motion of the tectonic plates on the Earth's surface, are constantly mixing it through. But it's possible that this view is too simplistic."

Where's the silicon
There really is a fundamental flaw in this hypothesis. It is generally agreed that the Earth was formed around 4.5 billion years ago through the accretion of meteorites that emerged from the primordial solar nebula, and as such has the same overall composition of those meteorites. The differentiation of the Earth into core, mantle and crust happened as part of a second step.

Leaving aside the iron and nickel, which are now part of the planet's core, it becomes apparent that the mantle should actually contain more silicon than the peridotite rock. Based on these calculations, the mantle should have a magnesium-silicon ratio closer to ~1 rather than ~1.3.

This moves geoscientists to ask the following question: where is the missing silicon And there is an obvious answer: the Earth's mantle contains so little silicon because it is in the Earth's core. But Murakami reaches a different conclusion, namely that the silicon is in the lower mantle. This would mean that the composition of the lower mantle differs to that of the upper mantel.

Winding hypothesis
Murakami's hypothesis takes a few twists and turns: First, we already know precisely how fast seismic waves travel through the mantle. Second, lab experiments show that the lower mantle is made mostly of the siliceous mineral bridgmanite and the magnesium-rich mineral ferropericlase.

Third, we know that the speed the seismic waves travel depends on the elasticity of the minerals that make up the rock. So if the elastic properties of the two minerals are known, it is possible to calculate the proportions of each mineral required to correlate with the observed speed of the seismic waves. It is then possible to derive what the chemical composition of the lower mantle must be.

While the elastic properties of ferropericlase are known, those of bridgmanite are as yet not. This is because this mineral's elasticity depends greatly on its chemical composition; more specifically, it varies according to how much iron the bridgmanite contains.

Time-consuming measurements
In his lab, Murakami and his team have now conducted high-pressure tests on this mineral and experimented with different compositions. The researchers began by clamping a small specimen between two diamond tips and using a special device to press them together. This subjected the specimen to extremely high pressure, similar to that found in the lower mantle.

The researchers then directed a laser beam at the specimen and measured the wave spectrum of the light dispersed on the other side. Using the displacements in the wave spectrum, they were able to determine the mineral's elasticity at different pressures. "It took a very long time to complete the measurements," Murakami reports. "Since the more iron bridgmanite contains the less permeable to light it becomes, we needed up to fifteen days to complete each individual measurement."

Silicon discovered
Murakami then used the measurement values to model the composition that best correlates with the dispersal of seismic waves. The results confirm his theory that the composition of the lower mantle differs to that of the upper mantel. "We estimate that bridgmanite makes up 88 to 93 percent of the lower mantle," Murakami says, "which gives this region a magnesium-silicon ratio of approximately 1.1." Murakami's hypothesis solves the mystery of the missing silicon.

But his findings raise new questions. We know for instance that within certain subduction zones, the Earth's crust gets pushed deep into the mantle - sometimes even as far as the border to the core. This means that the upper and lower mantles are actually not hermetically separated entities. How the two areas interact and exactly how the dynamics of the Earth's interior work to produce chemically different regions of mantle remains to be seen.

Research Report: Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite


Related Links
ETH Zurich
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Satellites keep eye on crawfish for gourmets
Wuhan (XNA) Oct 21, 2020
China's space programs have taken on a wide variety of duties, ranging from serving scientific endeavors, exploring extraterrestrial bodies, enabling better weather forecasts and guiding cars and ships. Soon, they will have a new group of beneficiaries-gourmets in love with freshwater crawfish-known in Chinese as xiaolongxia, or little lobsters. A domestic space-based system will help freshwater crawfish farmers in Hubei province-the largest producer in China of this gastronomically popular ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
NASA, Department of Energy expand on more than 50 years of collaboration

China passes export law protecting national security, covering tech

Tear in Russian segment of ISS taped with Kapton

Air leak rate at Russia's ISS Zvezda module halves after crack sealed with tape

EARTH OBSERVATION
Soyuz launches from Kourou delayed again due to Covid-19

Draper signs agreement to provide software for Stratolaunch's hypersonic vehicle

Lockheed Martin Adds Three Industry Partners To OpFires Team

DoD establishes hypersonics center at Naval Surface Warfare Center

EARTH OBSERVATION
Perseverance rover bringing 3D-printed metal parts to Mars

This transforming rover can explore the toughest terrain

Airbus to bring first Mars samples to Earth

NASA, JAXA to Send Sampling Technology to Moon and Phobos

EARTH OBSERVATION
China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

EARTH OBSERVATION
Space company takes to the skies alongside the NHS

SpaceX launches 14th batch of Starlink satellites

A new decade of European exploration

Consultation on draft insurance and liabilities requirements to implement the Space Industry Act 2018

EARTH OBSERVATION
Does science have a plastic problem

When honey flows faster than water

Scientists discover unusual materials properties at ultrahigh pressure

Western Australia to host space communications station

EARTH OBSERVATION
Microbial diversity below seafloor is as rich as on Earth's surface

No social distancing at the beginning of life

Vaporized metal in the air of an exoplanet

Massive stars are factories for ingredients to life

EARTH OBSERVATION
Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.