. | . |
A new tool in the search for axions by Staff Writers Tokyo, Japan (SPX) Feb 05, 2021
Researchers from the international BASE collaboration at CERN, Switzerland, which is led by the RIKEN Fundamental Symmetries Laboratory, have discovered a new avenue to search for axions--a hypothetical particle that is one of the candidates of dark matter particles. The group, which usually performs ultra-high precision measurements of the fundamental properties of trapped antimatter, has for the first time used the ultra-sensitive superconducting single antiproton detection system of their advanced Penning trap experiment as a sensitive dark matter antenna. If our current understanding of cosmology is correct, ordinary "visible" matter only makes up 5 percent of the total energy content of the universe. Another 26 percent is believed to be a mysterious substance called "cold dark matter". Because this hypothetical "dark matter" does not interact strongly with ordinary matter, it is extremely hard to detect, and as a result its exact microscopic properties have yet to be understood. One possibility is that "dark matter" is a new type of particle, called an axion. In fact, there are a number of global physics programs hunting for dark matter "axions" or "axion-like particles" using very different types of detectors. If axions and axion-like dark matter particles (ALPs) exist, they oscillate through the galaxy at characteristic frequencies defined by their masses. In strong magnetic fields, such as those present in Penning trap experiments, the particles might convert into electromagnetically interacting photons. Like a musician hitting a string of their instrument, the converted ALPs would then excite the detection resonators of the sensitive single particle detectors causing them to reverberate, allowing the induced dark matter "sound" to be detected. Thanks to the ultra-high sensitivity of the single-antiproton detectors used in the BASE experiment, the researchers were able to set new laboratory limits on the coupling of axion-like particles and photons. Though no ALP-induced signal was detected, the axion-to-photon coupling limits which were reached were similar to the limits derived from astrophysical searches and constitute, in a narrow mass range, the best laboratory limits derived so far. The combination of Penning-trap and single particle detection methods furthermore enables detector noise-level calibration by single-particle quantum thermometry, an elegant method that can provide model-independent calibration of coupling limits. In addition, this newly discovered avenue of using precision Penning trap experiments as axion detectors has the potential to be extended to other trap experiments, and to derive axion-photon coupling limits in much broader mass ranges. According to Stefan Ulmer, who heads the Fundamental Symmetries Laboratory, "With a purpose built-experiment, combining the already available technologies with higher magnetic fields, and lower detector temperatures, we are optimistic that we will be able to improve the limits by at least a factor of 100, and with ongoing developments, we may be able to improve the current detection bandwidth by at least a factor of 3,000."
Solving complex physics problems at lightning speed Gothenburg, Sweden (SPX) Feb 02, 2021 A calculation so complex that it takes twenty years to complete on a powerful desktop computer can now be done in one hour on a regular laptop. Physicist Andreas Ekstrom at Chalmers University of Technology, together with international research colleagues, has designed a new method to calculate the properties of atomic nuclei incredibly quickly. The new approach is based on a concept called emulation, where an approximate calculation replaces a complete and more complex calculation. Although the r ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |