. 24/7 Space News .
WATER WORLD
A new look at deep-sea microbes
by Staff Writers
Newark DE (SPX) Jul 13, 2020

Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy. However, microbial communities found deeper in seafloor sediments in and around hydrocarbon seepage sites have more energy available and higher population turnover rates than previously thought.

Microbial cells are found in abundance in marine sediments beneath the ocean and make up a significant amount of the total microbial biomass on the planet. Microbes found deeper in the ocean, such as in hydrocarbon seeps, are usually believed to have slow population turnover rates and low amounts of available energy, where the further down a microbe is found, the less energy it has available.

A new study published out of a collaboration with the University of Delaware and ExxonMobil Research and Engineering shows that perhaps the microbial communities found deeper in the seafloor sediments in and around hydrocarbon seepage sites have more energy available and higher population turnover rates than previously thought.

Using sediment samples collected by ExxonMobil researchers, UD professor Jennifer Biddle and her lab group - including Rui Zhao, a postdoctoral researcher who is the first author on the paper; Kristin Yoshimura, who received her doctorate from UD; and Glenn Christman, a bioinformatician - worked on a study in collaboration with Zara Summers, an ExxonMobil microbiologist. The study, recently published in Scientific Reports, looks at how microbial dynamics are influenced by hydrocarbon seepage sites in the Gulf of Mexico.

Biddle and her lab members received the frozen sediments, collected during a research cruise, from ExxonMobil and then extracted the DNA and sequenced it at the Delaware Biotechnology Institute (DBI).

The samples Biddle's lab group studied were ones collected from deeper in hydrocarbon seeps that usually get ignored.

"Most people only look at the top couple of centimeters of sediment at a seep, but this was actually looking 10-15 centimeters down," said Biddle associate professor in the School of Marine Science and Policy in UD's College of Earth, Ocean and Environment. "We then compared seepage areas to non-seepage areas, and the environment looked really different."

Inside the seep, the microbes potentially lead a fast, less efficient life while outside the seep, the microbes lead a slower but more efficient life. This could be attributed to what energy sources are available to them in their environment.

"Understanding deep water seep microbial ecology is an important part of understanding hydrocarbon-centric communities," said Summers.

Biddle said that microbes are always limited by something in the environment, such as how right now during the quarantine, we are limited by the amount of available toilet paper. "Outside of the seep, microbes are likely limited by carbon, whereas inside the seep, microbes are limited by nitrogen," said Biddle.

While the microbes found inside the seep seem to be racing to make more nitrogen to keep up and grow with their fellow microbes, outside of the seep, the researchers found a balance of carbon and nitrogen, with nitrogen actually being used by the microbes as an energy source.

"Usually, we don't think of nitrogen as being used for energy. It's used to make molecules, but something that was striking for me was thinking about nitrogen as a significant energy source," said Biddle.

This difference between the microbes found inside the seeps and those found outside the seeps could potentially mirror how microbes behave higher in the water column.

Previous research of water column microbes shows that there are different types of microbes: those that are less efficient and lead a more competition-based lifestyle where they don't use every single molecule as well as they could and those that are really streamlined, don't waste anything and are super-efficient.

"It makes me wonder if the microbes that are living at these seeps are potentially wasteful and they're fast growing but they're less efficient and the organisms outside of the seeps are a very different organism where they're way more efficient and way more streamlined," said Biddle, whose team has put in a proposal to go back out to sea to investigate further. "We want to look at these dynamics to determine if it still holds true that there is fast, less efficient life inside the seep and then slower, way more efficient life outside of the seep."

In addition, Biddle said this research showed that the deeper sediments in the seepages are most likely heavily impacted by the material coming up from the bottom, which means that the seep could be supporting a larger amount of biomass than previously thought.

"We often think about a seep supporting life like tube worms and the things that are at the expression of the sediment, but the fact that this could go for meters below them really changes the total biomass that the seep is supporting," said Biddle. "One of the big implications for the seepage sites with regards to the influence of these fluids coming up is that we don't know how deep it goes in terms of how much it changes the impact of subsurface life."

Summers added that these are interesting insights "when considering oil reservoir connectivity to, and influence on, hydrocarbon seeps."


Related Links
University Of Delaware
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
To curb climate change, scientists call for robust seagrass preservation efforts
Washington DC (UPI) Jul 07, 2020
It's not just corals that are suffering as the world's oceans are reshaped by climate change and other harmful human activities - a study published Tuesday in the journal Global Change Biology shows marine seagrass meadows are also in decline. According to a recent survey of marine carbon stocks in Western Australia's Cockburn Sound, the region lost nearly nine square miles of seagrass between the 1960s and 1990s as a result of nutrient runoff caused by coastal development. Seagrass mea ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
NASA concludes second spacewalk on historic mission

NASA invests $51M in innovative ideas from US Small Businesses

Russian cosmonaut votes on Putin's reforms from ISS

Orion's 'Twin' Completes Structural Testing for Artemis I Mission

WATER WORLD
Rocket Lab Mission Fails to Reach Orbit

NASA checks out SLS Core Stage avionics for Artemis I mission

NASA Plans for More SLS Rocket Boosters to Launch Artemis Moon Missions

Russia's Roscosmos Reveals Cost of Angara Heavy-Lift Rocket for Defence Ministry

WATER WORLD
'Marsquakes' measured by InSight show effects of sun and wind

China eyes July 20-25 launch for Mars rover

SwRI scientists demonstrate speed, precision of in situ planetary dating device

Mud downpours might have formed some of Mars's ancient highlands

WATER WORLD
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

WATER WORLD
UK, Indian firm salvage satellite operator Oneweb

India's private space sector an unknown quantity

US May Freeze OneWeb Sale in Blow to UK Hopes for Own Sat-Nav System

SpaceX launch Friday would boost Starlink network to nearly 600

WATER WORLD
Geologists identify deep-earth structures that may signal hidden metal lodes

Europe radioactivity likely linked to nuclear reactor: UN watchdog

Deutsche Bank teams up with Google in cloud services

The lightest shielding material in the world

WATER WORLD
Unprecedented ground-based discovery of 2 strongly interacting exoplanets

First exposed planetary core discovered

First exposed planetary core discovered allows glimpse inside other worlds

TESS mission discovers massive ice giant

WATER WORLD
Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.