. | . |
A mission for Earth's future by Staff Writers Munich, Germany (SPX) Mar 03, 2021
Understanding the changes happening to Earth and its delicate balance is of ever increasing importance. "With the Harmony mission, we have the opportunity to gain new insights into processes that take place within the Earth system. This represents a considerable scientific and technical challenge," says Alberto Moreira, Director of the German Aerospace Center Microwaves and Radar Institute. The Earth observation mission Harmony will focus on the observation and evaluation of the smallest movements at the air-sea interface, such as those of the wind, waves and surface currents, as well as alterations to solid earth, including tectonic deformations and height changes on volcanoes and in the cryosphere - that is, glacier flows and height changes. The Harmony mission will employ two satellites, which will orbit with one of the Copernicus Sentinel-1 satellites, flying in two different formations. In stereo formation, the Harmony satellites will be positioned at 350 kilometres in front of and behind the Sentinel-1 satellite. In close flight formation, both Harmony satellites will fly relatively close to one another - approximately 200-500 metres apart - and at a distance of 350 kilometres from Sentinel-1. Each Harmony satellite will carry a passive Synthetic Aperture Radar (SAR) as its primary payload. These will capture the reflections of signals sent by Sentinel-1 to Earth. A multibeam thermal infrared camera will also be on board each satellite. These will measure the height and the motion vectors of clouds. "Through the interaction between the three satellites, we will be able enable to measure the deformation of Earth's surface in three dimensions and determine the speed of ocean currents with an unprecedented accuracy of 0.2 metres per second," says Moreira.
Towards an exact picture In addition, the Institute is developing a complex software tool to calculate the performance of the radar systems and create simulated radar images. In a next step, algorithms will be used to generate three-dimensional deformation maps of Earth's surface and calculate topographical changes at volcanoes. This will prove that the user requirements for the accuracy of measurements will be met. Last but not least, the Institute conducted an airborne campaign using the airborne SAR system in northern Canada and recorded further data with the satellites TerraSAR-X and TanDEM-X, surveying the surface of the sea around the Caribbean island of Barbados. The scientists will use these results to prepare data utilisation techniques for the mission.
Venturing further into the future The industrial and scientific teams have another year and a half of hard work ahead of them to show that the mission has reached a sufficient level of technological and scientific maturity to proceed to the implementation phase, which will ultimately lead to the launch of the Harmony satellite by the end of this decade," explains Moreira. This phase includes a further feasibility assessment, including the design of the satellite platform and its instruments, flight operations planning and additional technological developments. Pau Prats, a member of the ESA Mission Advisory Group for Harmony and a researcher at the DLR Microwaves and Radar Institute, is convinced of the benefits of this mission: "The unique configuration of the Harmony satellites combined with Sentinel-1 will bring a new dimension to the SAR observations, thus paving the way for completely new applications over the next two decades."
MDA awarded contract to use satellite based data fusion and analytics to counter illegal fishing Toronto, Canada (SPX) Feb 25, 2021 MDA has announced that it has been awarded a three-year contract with the Government of Canada Department of Fisheries and Oceans and Defence Research and Development Canada to use satellite technology to detect vessels engaging in illegal, unreported and unregulated (IUU) fishing. The contract will run for a period of three years. The Dark Vessel Detection (DVD) program uses satellite technology to locate and track vessels that have switched off their location transmitting devices in an attempt t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |