. 24/7 Space News .
SPACE MEDICINE
A little piece of Washington state blasted into space this week
by Staff Writers
Richland WA (SPX) Jul 17, 2022

A portion of the DynaMoS research team at Kennedy Space Center: (L-R) Kim Hixson, Janet Jansson, Yuliya Farris, Marcia Garcia

A tiny piece of rural Washington state-and some of its "inhabitants"- blasted off into space from Kennedy Space Center in Florida on Thursday, July 14.

The inhabitants are bacteria that live in the soil in Prosser, Wash. Scientists will study what the bacteria do in a microgravity environment to learn more about how soil microbial communities function in space. That's information scientists need to grow food either in space or on another celestial body.

The experiment, funded by NASA, is called DynaMoS, or Dynamics of Microbiomes in Space. The study is being conducted by researchers at the Department of Energy's Pacific Northwest National Laboratory.

The soil microbial community headed for the International Space Station is composed of eight species of bacteria that PNNL scientists isolated from a scientific field site in Prosser that is run by Washington State University. The microbes will be among the payload of NASA's SpaceX CRS-25 resupply mission.

Crops in space?
PNNL scientists will study how the microbes behave in space compared to how they behave on Earth. Why do some species flourish under certain conditions and struggle under others? Who needs which partners to thrive, and who might be expendable? Will microbes work in space like they do on Earth, to help us grow food and cycle carbon and other nutrients?

"We still have a lot to learn about how microorganisms behave on Earth," said Janet Jansson, a chief scientist and laboratory fellow at PNNL and the leader of DynaMoS. "There are even more questions to address if we are to grow food in space, for instance on the lunar surface or for a long-lasting mission to Mars. How do microbes behave in microgravity, for instance?"

Jansson, Ryan McClure and other PNNL scientists have spent several years studying how communities of microorganisms behave in the soil on Earth.

Listen to PNNL's SciVIBE podcast, where Ryan McClure describes the mission.

"Plants need beneficial soil microbes to help them grow. Microbes can provide nutrients and protect plants from drought, from pathogens, and from other kinds of stress," said McClure. "Understanding how microbes interact as they do this is the first step for building communities of microbes that can support plant growth in places like the moon, Mars, or the space station."

At home, even in space
The experiment draws upon some of the fanciest technology available to study something as common as soil. Just one cup of soil typically contains thousands of different microbial species-far too many to understand at once. From its studies in Prosser, the PNNL team has evolved a naturally interacting community of eight species that will be used for the space mission.

The bacteria will grow in their home environment, soil collected from Prosser. A few days before launch, the scientists will inoculate the soil with the eight bacteria: Dyadobacter, Ensifer, Neorhizobium, Rhodococcus, Sinorhizobium, Sphingopyxis, Streptomyces, and Variovorax.

The soil will contain chitin, a common microbe chow found in soil worldwide. The ability to eat chitin, or eat byproducts given off by other species as they break down chitin, is key for the microbial community to survive.

"The native soil microbiome is very complex, with thousands of species and millions of interactions. So, we chose to start by focusing on eight species from a naturally evolved community to study," said McClure, who calls the grouping a "reduced-complexity community.

The experiment will include 104 test tubes containing the soil and chosen microbes. Half will be sent to the space station, and half will grow under similar conditions-except for gravity and atmosphere-in a laboratory at Kennedy Space Center in Florida.

Each tube will contain 20 grams of soil packed with chitin and hundreds of millions of each of the eight bacteria. The tubes will be sampled at four different times over 12 weeks. Then the space samples will be returned to Kennedy Space Center, and all the samples and microbes will be driven via refrigerated truck from Kennedy to PNNL for intensive analysis.

Back on terra firma
Scientists will measure the number of each species as well as their proteins, other molecular messengers known as transcripts, and byproducts called metabolites. Measurements will tell who is most abundant, who is rare, and more importantly what each is doing and how they're interacting. The measurements will be done at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility at PNNL.

"We need to understand who plays well with whom, who never wants to be with whom, and so on. It takes a village of microbes to create a thriving community and to enhance crop production. That's true for agricultural production anywhere, whether in space or on Earth," said Jansson, who is on a panel of biologists taking part in the Decadal Survey on Biological and Physical Sciences Research in Space 2023-2032.

Much of the groundwork for the soil mission has been established through a study of the soil microbiome by PNNL scientists and which has been funded by DOE.

Other experiments on board will look at wound healing, immune cells, biosensors, concrete and Earth's dust.


Related Links
Pacific Northwest National Laboratory
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
Artificial intelligence model finds potential drug molecules a thousand times faster
Boston MA (SPX) Jul 14, 2022
The entirety of the known universe is teeming with an infinite number of molecules. But what fraction of these molecules have potential drug-like traits that can be used to develop life-saving drug treatments? Millions? Billions? Trillions? The answer: novemdecillion, or 1060. This gargantuan number prolongs the drug development process for fast-spreading diseases like Covid-19 because it is far beyond what existing drug design models can compute. To put it into perspective, the Milky Way has about 100 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
NASA Highlights Climate Research on Cargo Launch, Sets Coverage

Short space trips for paying passengers on the way

Terran Orbital completes CAPSTONE's First TCM Burn

Jacobs Awarded $3.9B Engineering and Science Contract at NASA

SPACE MEDICINE
NASA, SpaceX launch climate science research to ISS

Skyrora opens UK's largest rocket engine manufacturing facility

Maiden Flight of Vega-C: Top of new European rocket from Beyond Gravity

Ariane 6 central core transferred to mobile gantry

SPACE MEDICINE
Ingenuity Postpones Flights Until August

Moving Right Along - Sol 3531

Machine learning 'phones home' for famous Martian rock

Source of ancient Martian rocks found using Perth supercomputer

SPACE MEDICINE
China prepares to launch Wentian lab module

Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

Wheels on China's Zhurong rover keep stable with novel material

Construction of China's first commercial spacecraft launch site starts in Hainan

SPACE MEDICINE
NASA and Houston's Ion Partner to Create Opportunities for Startup Community

Tech firms unveil plan for 'space-based' 5G network

ESA astronaut selection in the final stages

Kleos Space invests for future growth in the UK

SPACE MEDICINE
A programming language for hardware accelerators

Advances in the design and manufacturing of novel freeform optics

France plans fashion revolution with climate-impact labels

World's first bioplastic vinyl record launched in the UK

SPACE MEDICINE
To search for alien life, astronomers will look for clues in the atmospheres of distant planets

Webb begins hunt for the first stars and habitable worlds

Undead planets: the unusual conditions of the first exoplanet detection

The life puzzle: the location of land on a planet can affect its habitability

SPACE MEDICINE
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.