![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Leeds UK (SPX) Apr 06, 2020
Scientists have made a breakthrough in the development of a new generation of electronics that will require less power and generate less heat. It involves exploiting the complex quantum properties of electrons - in this case, the spin state of electrons. In a world first, the researchers - led by a team of physicists from the University of Leeds - have announced in the journal Science Advances that they have created a 'spin capacitor' that is able to generate and hold the spin state of electrons for a number of hours. Previous attempts have only ever held the spin state for a fraction of a second. In electronics, a capacitor holds energy in the form of electric charge. A spin capacitor is a variation on that idea: instead of holding just charge, it also stores the spin state of a group of electrons - in effect it 'freezes' the spin position of each of the electrons. That ability to capture the spin state opens up the possibility that new devices could be developed that store information so efficiently that storage devices could get very small. A spin capacitor measuring just one square inch could store 100 Terabytes of data. Dr Oscar Cespedes, Associate Professor in the School of Physics and Astronomy who supervised the research, said: "This is a small but significant breakthrough in what could become a revolution in electronics driven by exploitation of the principles of quantum technology. "At the moment, up to 70 per cent of the energy used in an electronic device such as a computer or mobile phone is lost as heat, and that is the energy that comes from electrons moving through the device's circuitry. It results in huge inefficiencies and limits the capabilities and sustainability of current technologies. The carbon footprint of the internet is already similar to that of air travel and increases year on year. "With quantum effects that use light and eco-friendly elements, there could be no heat loss. It means the performance of current technologies can continue to develop in a more efficient and sustainable way that requires much less power." Dr Matthew Rogers, one of the lead authors, also from Leeds, commented: "Our research shows that the devices of the future may not have to rely on magnetic hard disks. Instead. They will have spin capacitors that are operated by light, which would make them very fast, or by an electrical field, which would make they extremely energy efficient. "This is an exciting breakthrough. The application of quantum physics to electronics will result in new and novel devices."
How a spin capacitor works With quantum technology, spin capacitors could write and read information coded into the spin state of electrons by using light or electric fields. The research team were able to develop the spin capacitor by using an advanced materials interface made of a form of carbon called buckminsterfullerene (buckyballs), manganese oxide and a cobalt magnetic electrode. The interface between the nanocarbon and the oxide is able to trap the spin state of electrons. The time it takes for the spin state to decay has been extended by using the interaction between the carbon atoms in the buckyballs and the metal oxide in the presence of a magnetic electrode. Some of the world's most advanced experimental facilities were used as part of the investigation. The researchers used the ALBA Synchrotron in Barcelona which uses electron accelerators to produce synchrotron light that allows scientists to visualise the atomic structure of matter and to investigate its properties. Low energy muon spin spectroscopy at the Paul Scherrer Insitute in Switzerland was used to monitor local spin changes under light and electrical irradiation within billionths of a meter inside the sample. A muon is a sub-atomic particle. The results of the experimental analysis were interpreted with the assistance of computer scientists at the UK's Science and Technical Facilities Council, home to one of the UK's most powerful supercomputers. The scientists believe the advances they have made can be built on, most notably towards devices that are able to hold spin state for longer periods of time.
Research Report: "Reversible spin storage in metal oxide--fullerene heterojunctions"
![]() ![]() To tune up your quantum computer, better call an AI mechanic Washington DC (SPX) Apr 01, 2020 A high-end race car engine needs all its components tuned and working together precisely to deliver top-quality performance. The same can be said about the processor inside a quantum computer, whose delicate bits must be adjusted in just the right way before it can perform a calculation. Who's the right mechanic for this quantum tuneup job? According to a team that includes scientists at the National Institute of Standards and Technology (NIST), it's an artificial intelligence, that's who. The tea ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |