![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Vienna, Austria (SPX) Jul 07, 2022
If you switch a bit in the memory of a computer and then switch it back again, you have restored the original state. There are only two states that can be called "0 and 1". However, an amazing effect has now been discovered at TU Wien (Vienna): In a crystal based on oxides of gadolinium and manganese, an atomic switch was found that has to be switched back and forth not just once, but twice, until the original state is reached again. During this double switching-on and switching-off process, the spin of gadolinium atoms performs one full rotation. This is reminiscent of a crankshaft, in which an up-and-down movement is converted into a circular movement. This new phenomenon opens up interesting possibilities in material physics, even information could be stored with such systems. The strange atomic switch has now been presented in the scientific journal Nature.
Coupling of electrical and magnetic properties Magnetic properties, on the other hand, are closely related to the spin of atoms - the particle's intrinsic angular momentum, which can point in a very specific direction, much like the Earth's axis of rotation points in a very specific direction. However, there are also materials in which electrical and magnetic phenomena are very closely coupled. Prof. Andrei Pimenov and his team at the Institute of Solid State Physics at TU Wien are researching such materials. "We exposed a special material made of gadolinium, manganese and oxygen to a magnetic field and measured how its electrical polarisation changed in the process," says Andrei Pimenov. "We wanted to analyse how the electrical properties of the material can be changed by magnetism. And surprisingly, we came across a completely unforeseen behaviour."
Back to the beginning in four steps Now you can go through the same process a second time: Again, you switch on the magnetic field and the electric polarisation remains approximately constant. If you switch off the magnetic field, the polarisation reverses again and thus returns to its original state. "This is extremely remarkable," says Andrei Pimenov. "We perform four different steps, each time the material changes its internal properties, but only twice does the polarisation change, so you reach the initial state only after the fourth step."
Four-stroke engine for gadolinium "In a sense, it's a four-stroke engine for atoms," says Andrei Pimenov. "In a four-stroke engine, too, it takes four steps to get back to the initial state - and the cylinder moves up and down twice in the process. In our case, the magnetic field moves up and down twice before the initial state is restored and the spin of the gadolinium atoms points in the original direction again." Theoretically, such materials could be used to store information: a system with four possible states would have a storage capacity of two bits per switch, instead of the usual one bit of information for "0" or "1". But the effect is also particularly interesting for sensor technology: for example, one could produce a counter for magnetic pulses in this way. The effect provides important new inputs for theoretical research: it is another example of a so-called "topological effect", a class of material effects that have been attracting a lot of attention in solid-state physics for years and should enable the development of new materials.
Research Report:'Topologically protected magnetoelectric switching in a multiferroic
![]() ![]() Giant Rashba semiconductors show unconventional dynamics Berlin, Germany (SPX) Jul 07, 2022 In recent decades, the complexity and functionality of silicon-based technologies has increased exponentially, commensurate with the ever-growing demand for smaller, more capable devices. However, the silicon age is coming to an end. With increasing miniaturisation, undesirable quantum effects and thermal losses are becoming an ever-greater obstacle. Further progress requires new materials that harness quantum effects rather than avoid them. Spintronic devices, which use spins of electrons rather ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |