. | . |
A bath for precision printing of 3-D silicone structures by Staff Writers Washington DC (SPX) May 16, 2017
Researchers have developed an oil-based "bath," or support system, that facilitates precise 3-D printing of silicon materials in a variety of shapes. They demonstrated the capability of this method by using it to create model tracheal implants and a functional fluid pump, among other items relevant to biomedicine. In the early 1980s, the emergence of 3-D printing led to expectations that the method would become the tool of choice for fabricating medical components from biocompatible materials like silicone. However, to date, this possibility has not been fully realized, at least for silicone-based materials, due in part to instabilities between silicone inks and the microgel systems that support 3-D printing processes. These microgels are meant to trap the printed material, and - under the right conditions - to become fluid enough for printing of a desired item to occur. This works for aqueous soft materials, though printing of silicone materials has had less success; a versatile, oil-based microgel material that could be tuned to mimic aqueous microgels has been needed. Here, Christopher S. O'Bryan et al. report such a microgel, one that eliminates instabilities between printed materials and their microgel support. Their substance contains both diblock and triblock copolymers, a combination that the authors found allows for the polymers within the microgel to expand but not lock together.
Gainesville FL (SPX) May 17, 2017 For the millions of people every year who have or need medical devices implanted, a new advancement in 3D printing technology developed at the University of Florida promises significantly quicker implantation of devices that are stronger, less expensive, more flexible and more comfortable than anything currently available. In a paper published in the journal Science Advances, researchers l ... read more Related Links American Association for the Advancement of Science Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |