Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
A Single-Atom Light Switch
by Florian Aigner
Vienna, Austria (SPX) Nov 09, 2013


The Quantum Light Switch: It can occupy both possible states at the same time.

With just a single atom, light can be switched between two fibre optic cables at the Vienna University of Technology. Such a switch enables quantum phenomena to be used for information and communication technology.

Fibre optic cables are turned in to a quantum lab: scientists are trying to build optical switches at the smallest possible scale in order to manipulate light. At the Vienna University of Technology, this can now be done using a single atom. Conventional glass fibre cables, which are used for internet data transfer, can be interconnected by tiny quantum systems.

Light in a Bottle
Professor Arno Rauschenbeutel and his team at the Vienna University of Technology capture light in so-called "bottle resonators". At the surface of these bulgy glass objects, light runs in circles. If such a resonator is brought into the vicinity of a glass fibre which is carrying light, the two systems couple and light can cross over from the glass fibre into the bottle resonator.

"When the circumference of the resonator matches the wavelength of the light, we can make one hundred percent of the light from the glass fibre go into the bottle resonator - and from there it can move on into a second glass fibre", explains Arno Rauschenbeutel.

A Rubidium Atom as a Light Switch
This system, consisting of the incoming fibre, the resonator and the outgoing fibre, is extremely sensitive: "When we take a single Rubidium atom and bring it into contact with the resonator, the behaviour of the system can change dramatically", says Rauschenbeutel.

If the light is in resonance with the atom, it is even possible to keep all the light in the original glass fibre, and none of it transfers to the bottle resonator and the outgoing glass fibre. The atom thus acts as a switch which redirects light one or the other fibre.

Both Settings at Once: The Quantum Switch
In the next step, the scientists plan to make use of the fact that the Rubidium atom can occupy different quantum states, only one of which interacts with the resonator. If the atom occupies the non-interacting quantum state, the light behaves as if the atom was not there. Thus, depending on the quantum state of the atom, light is sent into either of the two glass fibres.

This opens up the possibility to exploit some of the most remarkable properties of quantum mechanics: "In quantum physics, objects can occupy different states at the same time", says Arno Rauschenbeutel. The atom can be prepared in such a way that it occupies both switch states at once. As a consequence, the states "light" and "no light" are simultaneously present in each of the two glass fibre cables.

For the classical light switch at home, this would be plain impossible, but for a "quantum light switch", occupying both states at once is not a problem. "It will be exciting to test, whether such superpositions are also possible with stronger light pulses. Somewhere we are bound to encounter a crossover between quantum physics and classical physics", says Rauschenbeutel.

This light switch is a very powerful new tool for quantum information and quantum communication. "We are planning to deterministically create quantum entanglement between light and matter", says Arno Rauschenbeutel. "For that, we will no longer need any exotic machinery which is only found in laboratories. Instead, we can now do it with conventional glass fibre cables which are available everywhere."

Original Paper

.


Related Links
Institute for Atomic and Subatomic Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Super-thin membranes clear the way for chip-sized pumps
Rochester, Germany (SPX) Nov 14, 2013
The ability to shrink laboratory-scale processes to automated chip-sized systems would revolutionize biotechnology and medicine. For example, inexpensive and highly portable devices that process blood samples to detect biological agents such as anthrax are needed by the U.S. military and for homeland security efforts. One of the challenges of "lab-on-a-chip" technology is the need for miniaturiz ... read more


CHIP TECH
Moon mission yields clues to face of 'man in the moon'

Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

CHIP TECH
Frugal Mars mission launchpad for India in global space market

Mars probe named in honor of 19th century astronomer Schiaparelli

Curiosity Team Working To Understand First Fault Related Warm Reset

Multiple Missions Will Get China Moving On Mars

CHIP TECH
UCF Lands NASA-Funded Center, Linchpin for Future Space Missions

NASA Selects Research Teams for New Virtual Institute

From North Pole to the stars: Russia's thrill-seeking tycoon

A look at recent tech sector IPOs

CHIP TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

CHIP TECH
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

CHIP TECH
ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

CHIP TECH
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

CHIP TECH
European science satellite to break up late Sunday

New chemistry: Drawing and writing in liquid with light

Cat's eyes: Designing the perfect mixer

Recycling valuable materials used in TVs, car batteries, cell phones




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement