24/7 Space News
TIME AND SPACE
A Big Cosmological Mystery
An artistic impression of what the Big Ring (shown in blue) and Giant Arc (shown in red) would look like in the sky. Background image credit: Stellarium.
A Big Cosmological Mystery
by Staff Writers for UCL News
Preston UK (SPX) Jan 15, 2024

The discovery of a second ultra-large structure in the remote universe has further challenged some of the basic assumptions about cosmology.

The Big Ring on the Sky is 9.2 billion light-years from Earth. It has a diameter of about 1.3 billion light-years, and a circumference of about four billion light-years. If we could step outside and see it directly, the diameter of the Big Ring would need about 15 full Moons to cover it.

It is the second ultra-large structure discovered by University of Central Lancashire (UCLan) PhD student Alexia Lopez who, two years ago, also discovered the Giant Arc on the Sky. Remarkably, the Big Ring and the Giant Arc, which is 3.3 billion light-years across, are in the same cosmological neighbourhood - they are seen at the same distance, at the same cosmic time, and are only 12 degrees apart on the sky.

Alexia said: "Neither of these two ultra-large structures is easy to explain in our current understanding of the universe. And their ultra-large sizes, distinctive shapes, and cosmological proximity must surely be telling us something important - but what exactly?

"One possibility is that the Big Ring could be related to Baryonic Acoustic Oscillations (BAOs). BAOs arise from oscillations in the early universe and today should appear, statistically at least, as spherical shells in the arrangement of galaxies. However, detailed analysis of the Big Ring revealed it is not really compatible with the BAO explanation: the Big Ring is too large and is not spherical."

Other explanations might be needed, explanations that depart from what is generally considered to be the standard understanding in cosmology. One possibility might be a different theory - Conformal Cyclic Cosmology (CCC) - which was proposed by Nobel-prize winner Sir Roger Penrose. Rings in the universe could conceivably be a signal of CCC.

Another explanation might be the effect of cosmic strings passing through. Cosmic strings are filamentary 'topological defects' of great size, which could have been created in the early universe. Another Nobel-prize winner, Jim Peebles, recently hypothesised that cosmic strings could have a role in the origin of some other peculiarities in the large-scale distribution of galaxies.

Furthermore, the Big Ring challenges the Cosmological Principle, as did the Giant Arc previously. And if the Big Ring and the Giant Arc together form a still larger structure then the challenge to the Cosmological Principle becomes even more compelling.

Such large structures - and there are others found by other cosmologists - challenge our idea of what an 'average' region of space looks like. They exceed the size limit of what is considered theoretically viable, and they pose potential challenges to the Cosmological Principle.

Alexia said: "The Cosmological Principle assumes that the part of the universe we can see is viewed as a 'fair sample' of what we expect the rest of the universe to be like. We expect matter to be evenly distributed everywhere in space when we view the universe on a large scale, so there should be no noticeable irregularities above a certain size.

"Cosmologists calculate the current theoretical size limit of structures to be 1.2 billion light-years, yet both of these structures are much larger - the Giant Arc is almost three times bigger and the Big Ring's circumference is comparable to the Giant Arc's length.

"From current cosmological theories we didn't think structures on this scale were possible. We could expect maybe one exceedingly large structure in all our observable universe. Yet, the Big Ring and the Giant Arc are two huge structures and are even cosmological neighbours, which is extraordinarily fascinating."

The Big Ring appears as an almost perfect ring on the sky, but Alexia's further analysis reveals that it has more of a coil shape, like a cork-screw, that is aligned face-on with Earth. The Giant Arc, which is approximately 1/15th the radius of the observable universe, shows as an enormous, nearly symmetrical, crescent of galaxies in the remote universe. It is twice the size of the striking Sloan Great Wall of galaxies and clusters that is seen in the relatively nearby universe.

"The Big Ring and Giant Arc are the same distance from us, near the constellation of Bootes the Herdsman, meaning they existed at the same cosmic time when the universe was only half of its present age" commented Alexia. "They are also in the same region of sky, at only 12 degrees apart when observing the night sky.

"Identifying two extraordinary ultra-large structures in such close configuration raises the possibility that together they form an even more extraordinary cosmological system.

"This data we're looking at is so far away that it has taken half the universe's life to get to us, so from a time when the universe was about 1.8 times smaller than it is now. The Big Ring and the Giant Arc, both individually and together, gives us a big cosmological mystery as we work to understand the universe and its development."

Alexia, together with adviser Dr Roger Clowes, both from UCLan's Jeremiah Horrocks Institute, and collaborator Gerard Williger from the University of Louisville, USA, discovered the new structure by looking at absorption lines in the spectra of quasars from the Sloan Digital Sky Survey (SDSS).

Using the same method that led to the discovery of the Giant Arc, they observed the intervening Magnesium-II (or MgII - it means the atom has lost an electron) absorption systems back-lit by quasars, which are remote super-luminous galaxies. These very-distant, very-bright, quasars act like giant lamps shining a spotlight through distant, but much fainter, intervening galaxies that otherwise would go unseen.

Alexia has presented her findings on the Big Ring at the 243rd meeting of the American Astronomical Society (AAS) on the 10 January. The AAS invites researchers with potentially ground-breaking findings to share their work with the global astronomy community.

Related Links
University of Central Lancashire
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Einstein Probe lifts off on a mission to monitor the X-ray sky
Paris (ESA) Jan 10, 2024
The Chinese Academy of Sciences (CAS) spacecraft Einstein Probe lifted off on a Chang Zheng (Long March) 2C rocket from the Xichang Satellite Launch Centre in China at 15:03 CST / 07:03 GMT / 08:03 CET on 9 January 2024. With the successful launch, Einstein Probe began its mission to survey the sky and hunt for bursts of X-ray light from mysterious objects such as neutron stars and black holes. Einstein Probe is a collaboration led by CAS with the European Space Agency (ESA) and the Max Planck Ins ... read more

TIME AND SPACE
NASA, Partners to welcome private crew aboard Space Station

SpaceX and ESA collaborate on ISS mission featuring advanced german science experiments

Turkey's first astronaut set to boost Erdogan's ambitions

First European takes off on commercial flight to Space Station

TIME AND SPACE
SpaceX completes second launch Sunday, sends more satellites into orbit

Mexico Set for Space Sector Boost with New National Rocket and Space Center by Merida Aerospace

European crew poised for private mission to International Space Station

Rocket maker working on medium-lift model

TIME AND SPACE
Water may have flowed through Martian Valleys countless times

Sols 4066-4070: Cracking Up

Mars Express unveils potential water resource for future Mars missions at equator

IDEFIX Rover Set to Embark on Pioneering Journey to Martian Moon Phobos

TIME AND SPACE
Yan Hongsen's future dreams as 'Rocket Boy'

China's Tianzhou 7 docks with Tiangong Space Station

China Prepares to Launch Tianzhou 7 Cargo Ship to Tiangong Space Station

Tianzhou 7 mission set to enhance operations at China's Tiangong Space Station

TIME AND SPACE
Momentus secures $4M through direct stock offering to institutional investor

Sidus Space Partners with ASPINA for Satellite Technology Demonstration on LizzieSat Mission

AST SpaceMobile Launches $100 Million Stock Offering Amid Strategic Tech Investments

MEASAT Partners with SpaceX as Official Reseller for Starlink Services in Key Markets

TIME AND SPACE
NASA's Transition to Commercial Space Networks: A Leap in Wideband Communication

Laser Instrument on NASA's LRO Successfully 'Pings' Indian Moon Lander

Intercontinental team to grow protein crystals in space

ESA advances satellite testing capabilities at Europe's largest thermal vacuum facility

TIME AND SPACE
Study uncovers potential origins of life in ancient hot springs

Earth-sized planet discovered in 'our solar backyard'

ASU talk will examine ethical questions surrounding life in space

Key moment in the evolution of life on Earth captured in fossils

TIME AND SPACE
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.