. | . |
ASU team unravels key mysteries of spider silk by Staff Writers Tempe AZ (SPX) Oct 24, 2018
Scientists at ASU are celebrating their recent success on the path to understanding what makes the fiber that spiders spin - weight for weight - at least five times as strong as steel. One of the fundamental mysteries of spider silk which has limited scientists' ability to produce artificial silks of the quality of natural silks has just been explained by researchers in ASU's School of Molecular Sciences in collaboration with a team from San Diego State University and Northwestern University. Their results, published online in the Proceedings of the National Academy of Sciences (PNAS) is entitled "Hierarchical Spidroin Micellar Nanoparticles as the Fundamental Precursors of Spider Silks." "Spider silk has a unique combination of mechanical strength and elasticity that make it one of the toughest materials we know," says Jeff Yarger, professor in the School of Molecular Sciences in the College of Liberal Arts and Sciences. Spider silk is an exceptional biological polymer, related to collagen (the stuff of skin and bones) but much more complex in its structure. The ASU team of chemists is studying its molecular structure in an effort to produce materials ranging from uses in civil and mechanical engineering to artificial, yet biocompatible, tendons. "Everybody's familiar with silk, because they're familiar with silkworm silk. The silk trade has been around for a long time. But spider silk has a much larger variety in its properties," explains Yarger. Unfortunately, spiders don't produce silk in large quantities. "You can put lots of silkworms in a small area and genetically modify them to go from the larval state to a moth in 20-30 days. Spiders take longer. But let's get to the crux of it--spiders don't like each other. They eat each other," states Yarger. This of course eliminates the possibility of farming them en masse. Scientists have come up with ingenious ways to get around this problem. They have genetically engineered silkworms, E. coli, and even goats to produce spider silk. Unfortunately, while these organisms produce the same proteins that spiders make, they don't have the same mechanical properties as the natural product. They aren't as strong, for instance, or as flexible. This is where the current research comes in - Professor Yarger was joined by Dian Xu, Samrat Amin and Brian Cherry, all also from ASU, associate professor of chemistry from San Diego State University, Gregory Holland, and professor of chemistry from Northwestern University, Nathan Gianneschi. "In a matter of milliseconds, a spider can take a concentrated protein solution stored in its abdomen and pull this material rapidly through ducting and spinnerets to produce silk fibers," enthuses Yarger. "Understanding at the molecular level how spiders perform this complex process, and reproducing it in the lab, is the primary research objective within our group." The team employed a suite of magnetic resonance tools- NMR (or MRI) at ASU and San Diego State as well as cryo transmission electron microscopy at Northwestern University. They studied the precursor solution of the dragline silk of local Black Widow (or Latrodectus Hesperus) spiders. "We are now a step closer to a molecular understanding of this process," explains Yarger. We have discovered a hierarchical micellar nanoparticle structure based on the molecular organization of the proteins stored in the abdomen of spiders. This has led us to the first molecular level model of spider silk protein fiber formation and hopefully one step closer to lab production of spider silk protein fiber."
Use of raw materials to double by 2060: OECD Paris (AFP) Oct 22, 2018 Global use of raw materials is expected to double by 2060, "placing twice the pressure on the environment" than at present, according to an OECD study released on Monday. The study "sees global materials use rising to 167 gigatonnes in 2060 from 90 gigatonnes today," the Organisation for Economic Cooperation and Development, a group of advanced economies, said. It gave increases in population, economic activity and living standards around the world as key reasons for the rise, and underscored th ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |