. 24/7 Space News .
STELLAR CHEMISTRY
ASU instrument captures breathtaking 'first light' images
by Staff Writers
Tempe AZ (SPX) Jan 11, 2022

E-THEMIS temperature color image from the "first light" test, taken from the rooftop of ISTB4 on the ASU Tempe Campus. The top image was acquired at 12:40 p.m., the middle at 4:40 p.m. and the bottom image at 6:20 p.m. (after sunset). Temperatures are approximations during this testing phase. Image credit: NASA/JPL-Caltech/ASU

ASU scientists and engineers building the Europa Thermal Emission Imaging System (E-THEMIS) for NASA's Europa Clipper passed a major hurdle recently by capturing the first successful test images from this complex infrared camera, known as "first light" images.

Europa Clipper, a NASA mission to investigate Jupiter's moon Europa, is planned to launch in October 2024 and arrive at Jupiter in 2030. It will study this icy moon through a series of flybys while in orbit around Jupiter to investigate whether it could harbor conditions suitable for life.

E-THEMIS, which is led by Regents Professor Philip Christensen of Arizona State University's School of Earth and Space Exploration, is an infrared camera designed to map Europa's temperatures for the mission. These infrared images will help scientists seek clues about Europa's activity, including regions where Europa's suspected ocean may be near the surface.

"The surface of Europa is extremely cold, but the ocean underneath is warm, liquid water. If that water is coming near the surface through cracks and vents, E-THEMIS will see these warm regions and tell us where ocean water is closest to the surface," Christensen said. "Even if water erupted onto the surface many years ago, the ice will still be warm. From these temperature images, E-THEMIS will provide an excellent opportunity to study the geologic activity of Europa."

The "first light" E-THEMIS camera test images were taken from the rooftop of the Interdisciplinary Science and Technology Building 4 (ISTB4) on the ASU Tempe campus using a specially designed mobile cleanroom laboratory, which kept the camera safe from dust, microbes and aerosol particles.

"Our team spent months developing a portable clean lab to safely transport E-THEMIS to the roof of the building and collect data in a controlled environment," Christensen said.

One of the most spectacular test images produced from E-THEMIS is a temperature image taken looking north from ISTB4. In stunning detail, the image clearly shows ASU's Sun Devil Stadium and "A" Mountain, among other recognizable ASU landmarks. It is even possible to read details inside the stadium from the E-THEMIS instrument, based on temperature differences sensed from about 1.1 km (0.7 miles) away.

"The instrument worked beautifully and is in excellent focus," Christensen said.

During this test, the E-THEMIS team also collected temperature images throughout the afternoon and early evening. When displayed in color, these images reveal how the temperature changes as evening approaches. The red, orange and yellow colors in the images indicate warmer temperatures due to heat and the infrared radiation being emitted. The purples and dark blues indicate cooler temperatures, with less heat and infrared radiation emitted.

While the temperatures are approximations during this testing phase, the progression of cooler colors (purples and blues) from afternoon to evening in the three images, acquired at 12:40 p.m., 4:40 p.m. and 6:20 p.m., after sunset, illustrate how the infrared camera detected surface temperatures transitioning from warmer in the afternoon to cooler after sunset.

With this successful "first light" testing of E-THEMIS, the next step for the team is to begin the environmental testing to ensure that E-THEMIS will survive launch and operate as intended in space.

"Launch is one of the most stressful periods for any spacecraft or instrument, and we want to make sure E-THEMIS will survive, so we will put it through a rigorous set of vibration tests to simulate the launch conditions," Christensen said. "We will also test it in a vacuum chamber to make sure it will work properly in the vacuum of space."

And until at least late March 2022, visitors to the Gallery of Scientific Exploration on the first floor of ISTB4 can watch the E-THEMIS team hard at work in ASU's cleanrooms. In addition to Christensen, the engineering team includes Greg Mehall, Saadat Anwar, Heather Bowles, Courtnie Besich, Zoltan Farkas, Andrew Holmes, Ian Kubic, Edgar Madril, Bill O'Donnell, Carlos Ortiz, Dan Pelham, Mehul Patel and Rob Woodward.

In the coming months, they will continue their testing of this instrument before it leaves ASU and is shipped to NASA's Jet Propulsion Laboratory for integration into the Europa Clipper spacecraft.


Related Links
Europa Clipper
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Simulated Image Shows How NASA's Roman Could Expand on Hubble's Deepest View
Greenbelt MD (SPX) Jan 11, 2022
A team of astrophysicists has created a simulated image that shows how the Nancy Grace Roman Space Telescope could conduct a mega-exposure similar to but far larger than Hubble's celebrated Ultra Deep Field Image. This Hubble observation transformed our view of the early universe, revealing galaxies that formed just a few hundred million years after the big bang. "Roman has the unique ability to image very large areas of the sky, which allows us to see the environments around galaxies in the early ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA's newest astronaut class begins training in Houston

Japan space tourist eyes Mariana Trench trip after ISS

CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

STELLAR CHEMISTRY
Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Indian Space Agency tests cryogenic engine for its first-ever manned mission

Ride into space on Vega-C secured for FLEX and Altius

Astroscale U.S. and Orbit Fab sign first on-orbit satellite fuel sale agreement

STELLAR CHEMISTRY
NASA's InSight enters safe mode during regional Mars dust storm

Widespread megaripple activity on Martian North Pole

Sol 3354: Tantalizingly Out of Reach

Sol 3353: Raise the (Martian) Roof

STELLAR CHEMISTRY
Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

STELLAR CHEMISTRY
Advances in Space Transportation Systems Transforming Space Coast

Planet to launch 44 SuperDove satellites on SpaceX's Falcon 9

Advertising plays key role in satellite TV success, study shows

Euroconsult predicts highest government space budgets in decades despite Covid

STELLAR CHEMISTRY
Mangata Networks announces funding for satellite edge computing network

Take-Two to buy 'Farmville' creator Zynga for $12.7 bn

Metaverse gets touch of reality at CES

Ammonia and paper: Sustainability ideas at CES tech show

STELLAR CHEMISTRY
Cheops reveals a rugby ball-shaped exoplanet

Elusive atmospheric molecule produced in a lab for the 1st time by UH

From dust to planet: how gas giants form

It all comes down to the first electron

STELLAR CHEMISTRY
Ocean Physics Explain Cyclones on Jupiter

Oxygen ions in Jupiter's innermost radiation belts

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.