![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Bonn, Germany (SPX) May 29, 2018
The 12 m radio telescope APEX in Chile has been outfitted with special equipment including broad bandwidth recorders and a stable hydrogen maser clock for performing joint interferometric observations with other telescopes at wavelengths as short as 1.3 mm and the goal to obtain the ultimate picture of the black hole shadow. The addition of APEX to the so-called Event Horizon Telescope (EHT), which until recently consisted of antennas only in the northern hemisphere, reveals new and unprecedented details in the structure of Sgr A* at the centre of the Milky Way. The increased angular resolution provided by the APEX telescope now reveals details in the asymmetric and not point-like source structure, which are as small as 36 million km. This corresponds to dimensions that are only 3 times larger than the hypothetical size of the black hole (3 Schwarzschild This corresponds to dimensions that are only 3 times larger than the hypothetical size of the black hole (3 Schwarzschild radii). Astronomers are hunting for the ultimate proof of Einstein's theory of general relativity, which is to obtain a direct image of the shadow of a black hole. This is possible by combining radio telescopes spread over the globe using a technique which is called Very Long Baseline Interferometry (VLBI). The participating telescopes are located at high altitudes to minimize the disturbance from the atmosphere and on remote sites with clear skies, allowing to observe the compact radio source Sagittarius A* (Sgr A*) at the centre of the Milky Way. The research team observed Sgr A* in 2013 using VLBI telescopes at four sites. The telescopes include the APEX telescope in Chile, the CARMA array in California, the JCMT and the phased SMA in Hawaii, and the SMT telescope in Arizona. Sgr A* was detected with all stations and the longest baseline length reached up to almost 10,000 kilometers, indicating an ultra-compact and asymmetric (not point-like) source structure. "The participation of the APEX telescope almost doubles the length of the longest baselines in comparison to earlier observations and leads to a spectacular resolution of 3 Schwarzschild radii only", says Ru-Sen Lu from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, the lead author of the publication. "It reveals details in the central radio source which are smaller than the expected size of the accretion disk", adds Thomas Krichbaum, initiator of the mm-VLBI observations with APEX. The location of APEX in the southern hemisphere considerably improves the image quality for a source as far south in the sky as Sagittarius A* (-29 degrees declination). APEX has paved the way towards the inclusion of the large and extremely sensitive ALMA telescope into the EHT observations, which are now being performed once a year. "We have worked hard at an altitude of more than 5000 meters to install the equipment to make the APEX telescope ready for VLBI observations at 1.3 mm wavelength", says Alan Roy, also from MPIfR who leads the VLBI team at APEX. "We are proud of the good performance of APEX in this experiment." The team employed a model-fitting procedure to investigate the event-horizon-scale-structure of Sgr A*. "We started to figure out what the horizon-scale structure may look like, rather than just draw generic conclusions from the visibilities that we sampled. It is very encouraging to see that the fitting of a ring-like structure agrees very well with the data, though we cannot exclude other models, e.g., a composition of bright spots.", adds Ru-Sen Lu. Future observations with more telescopes added to the EHT will sort out residual ambiguities in the imaging. The black hole at the center of the our galaxy is embedded in a dense interstellar medium, which may affect the propagation of electromagnetic waves along the line of sight. "However, the interstellar scintillation, which in principle may lead to image distortions, is not a strongly dominating effect at 1.3 mm wavelength ", says Dimitrios Psaltis from the University of Arizona, who is the EHT project scientist. "The results are an important step to ongoing development of the Event Horizon Telescope", says Sheperd Doeleman from the Harvard-Smithsonian Center for Astrophysics and director of the EHT project. "The analysis of new observations, which since 2017 also include ALMA, will bring us another step closer to imaging the black hole in the centre of our Galaxy." The findings are published in The Astrophysical Journal (2018, Vol. 859, 60. DOI: 10.3847/1538-4357).
![]() ![]() NASA awards contract for space telescope mission Boulder CO (SPX) May 24, 2018 NASA has awarded a contract to Ball Aerospace and Technologies Corporation, Boulder, Colorado, for the primary instrument components for the Wide Field Infrared Survey Telescope (WFIRST). Called the Wide Field Instrument (WFI) Opto-Mechanical Assembly, the cost-plus-award-fee contract has a value of approximately $113.2 million. The period of performance is from May 2018 through June 2026. Managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland, WFIRST is fully-funded for Fiscal ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |