. 24/7 Space News .
TECTONICS
ANU scientists helping to improve understanding of plate tectonics
by Staff Writers
Canberra, Australia (SPX) Mar 16, 2018

Professor Ian Jackson with a fragment of the Earth's upper mantle, peridotite (green rock inside the black material), brought from around 30km depth within a basaltic magma. Image courtesy ANU.

Scientists at The Australian National University (ANU) are helping to improve understanding of how rocks in Earth's hot, deep interior enable the motions of tectonic plates, which regulate the water cycle that is critical for a habitable planet.

Research team leader Professor Ian Jackson said tectonic plates were continuously created at mid-ocean ridges and destroyed when they sink back into the Earth's mantle.

"Plate tectonics is responsible for diverse geological phenomena including continental drift, mountain building and the occurrence of volcanoes and earthquakes," said Professor Jackson from the ANU Research School of Earth Sciences.

The stirring of the Earth's interior, which is responsible for the plate motions at the surface, has resulted in the Earth's gradual cooling over its 4.5 billion-year life.

He said defects allowed the normally strong and hard minerals of the Earth's deep interior to change their shape and flow like viscous fluid on geological timescales.

"We have found that flaws in the regular atomic packing in the dominant upper-mantle mineral, called olivine, that become more prevalent under oxidising conditions, substantially reduce the speeds of seismic waves," Professor Jackson said.

Seismic waves, caused by earthquakes, are used to image the Earth's deep interior in a manner similar to medical CAT scanning.

"Our new findings challenge a long-held theory that defects involving water absorption in these normally dry rocks could control both their viscosity and seismic properties," Professor Jackson said.

ANU Research School of Earth Sciences (RSES) PhD scholar Chris Cline is the lead author of the study undertaken in collaboration with RSES colleagues and Professor Ulrich Faul at the Massachusetts Institute of Technology in the United States.

The team used specialised equipment in a laboratory at ANU to make synthetic specimens similar to upper mantle rocks and measured their rigidity, which controls seismic wave speeds, under conditions simulating those of the Earth's mantle.

Professor Jackson said the research was particularly relevant to environments where old, cold, and oxidised tectonic plates sink into the Earth's hot interior.

"We have the potential to help map the extent of oxidised regions of the Earth's mantle that play such an important role in the chemical evolution of Earth," he said.

Research paper


Related Links
Australian National University
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
Unique diamond impurities indicate water deep in Earth's mantle
Las Vegas NC (SPX) Mar 12, 2018
A UNLV scientist has discovered the first direct evidence that fluid water pockets may exist as far as 500 miles deep into the Earth's mantle. Groundbreaking research by UNLV geoscientist Oliver Tschauner and colleagues found diamonds pushed up from the Earth's interior had traces of unique crystallized water called Ice-VII. The study, "Ice-VII inclusions in Diamonds: Evidence for aqueous fluid in Earth's deep Mantle," was published Thursday in the journal Science. In the jewelry busin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Astronaut Scott Kelly weighs in on the 'State of Science'

Knowledge matters for Year of Education on Station

NASA, partners seek input on standards for deep space technologies

Goddard licenses gear bearing tech to Bahari Energy for urban wind power

TECTONICS
SpaceX carries out 50th launch of Falcon 9 rocket

NASA team outfits Orion for abort test with lean approach

World-first firing of air-breathing electric thruster

GOES-S marks 100th launch of Rocketdyne AJ-60A solid rocket booster

TECTONICS
The Case of the Martian Boulder Piles

Opportunity collects more 'Selfie' frames

Dyes for 'live' extremophile labeling will help discover life on Mars

Mars Express views moons set against Saturn's rings

TECTONICS
China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

Satellite will test plan for global China led satcom network

China plans rocket sea-launch

TECTONICS
Lockheed Martin Begins Assembly of JCSAT-17 Commercial Communications Satellite

ESA Astronaut will test CIMON aboard the ISS Watson AI

Iridium Certus readies for takeoff with aviation service providers

ESA incubators ranked among world's best

TECTONICS
Researchers use 'flying focus' to better control lasers over long distances

Technique to see objects hidden around corners

New imaging technology shows laser pulses are formed from chaos

Latest Updates from NASA on IMAGE Recovery

TECTONICS
Study sheds light on the genetic origins of the two sexes

Heat shock system helps bug come back to life after drying up

Rare mineral discovered in plants for first time

Hubble observes exoplanet atmosphere in more detail than ever before

TECTONICS
Jupiter's turmoil more than skin deep: researchers

Jupiter's Jet-Streams Are Unearthly

You are entering the Jovian Twilight Zone

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.