. 24/7 Space News .
STELLAR CHEMISTRY
ALMA Identifies dark ancestors of massive elliptical galaxies
by Staff Writers
Tokyo NM (SPX) Aug 08, 2019

Artist's impression of the distant galaxies observed with ALMA. ALMA identified faint galaxies invisible to the Hubble Space Telescope. Researchers assume that those HST-dark galaxies are the ancestors of massive elliptical galaxies in the present Universe.

Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA) identified 39 faint galaxies that are not seen with the Hubble Space Telescope's deepest view of the universe 10 billion light-years away. They are 10 times more numerous than similarly massive but optically bright galaxies detected with Hubble.

The research team assumes that these faint galaxies are the ancestors of massive elliptical galaxies in the present universe, however interestingly, no major theories for the evolution of the universe have predicted such a rich population of star-forming, dark, massive galaxies. The new ALMA results throw into question our understanding of the early universe. These results are published in the latest issue of the journal Nature.

"Previous studies have found extremely active star-forming galaxies in the early universe, but their population is quite limited," says Tao Wang, the lead author of the paper and a researcher at the University of Tokyo, French Alternative Energies and Atomic Energy Commission (CEA), and the National Astronomical Observatory of Japan.

"Star formation in the dark galaxies we identified is less intense, but they are 100 times more abundant than the extreme starbursts. It is important to study such a major component of the history of the universe to comprehend galaxy formation."

Wang and his team targeted three ALMA windows to the deep universe opened up by the Hubble Space Telescope (HST): the CANDELS fields. The team discovered 63 extremely red objects in the infrared images taken by NASA's Spitzer Space Telescope: they are too red to be detected with HST. However, Spitzer's limited spatial resolution prevented astronomers from identifying their nature.

ALMA detected submillimeter-wave emission from 39 out of the 63 extremely red objects. Thanks to its high resolution and sensitivity, ALMA confirmed that they are massive, star-forming galaxies that are producing stars 100 times more efficiently than the Milky Way. These galaxies are representative of the majority of massive galaxies in the universe 10 billion years ago, most of which have so far been missed by previous studies.

"By maintaining this rate of star formation, these ALMA-detected galaxies will likely transform into the first population of massive elliptical galaxies formed in the early universe," says David Elbaz, an astronomer at CEA, and coauthor on the paper, "But there is a problem. They are unexpectedly abundant." The researchers estimated their number density to be equivalent to 530 objects in a square degree in the sky.

This number density well exceeds predictions from current theoretical models and computer simulations. In addition, according to the widely accepted model of the universe with a certain type of dark matter, it is difficult to build a large number of massive objects in such an early phase of the universe. Together, the present ALMA results challenge our current understanding of the evolution of the universe.

"Like the galaxy M87, in which recently astronomers obtained the first-ever image of the black hole, massive elliptical galaxies are located in the heart of galaxy clusters, which are believed to form most of their stars in the early universe. " explains Kotaro Kohno, a professor at the University of Tokyo and member of the research team.

"However, previous searches for the progenitors of these massive galaxies have been unsuccessful because they were based solely on galaxies that are easily detectable by HST. The discovery of this large number of massive, HST-dark galaxies provides direct evidence for the early assembly of massive galaxies during the first Gyr [1 gigayear = 1 billion years] of the universe."

More detailed follow-up observations with ALMA and NASA's James Webb Space Telescope will be essential to provide further insights into the nature of these galaxies, enabling a complete view of galaxy formation in the early universe."

Research Report: "A Dominant Population of Optically Invisible Massive Galaxies in the Early Universe"


Related Links
National Astronomical Observatory Of Japan
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Ghosts of ancient explosions live on in stars today
Pasadena CA (SPX) Aug 07, 2019
When small, dense stars called white dwarfs explode, they produce bright, short-lived flares called Type Ia supernovae. These supernovae are informative cosmological markers for astronomers - for example, they were used to prove that the universe is accelerating in its expansion. White dwarfs are not all the same, ranging from half of the mass of our Sun to almost 50 percent more massive than our Sun. Some explode in Type Ia supernovae; others simply die quietly. Now, by studying the "fossil ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Two weeks of science and beyond on ISS

Orion Service Module completes critical propulsion test

As iPhone sales sputter, Apple moves toward reinvention, again

Study identifies way to enhance the sustainability of manufactured soils

STELLAR CHEMISTRY
SpaceX launches Falcon 9 carrying Israel's AMOS-17 satellite

Pentagon working on 9 separate hypersonic missile projects to take on Russia, China

Little SLS launches in low speed wind tunnel

Paragon Space Development Corporation CELSIUS Technology NASA Tipping Point Contract Award

STELLAR CHEMISTRY
New finds for Mars rover, seven years after landing

Optometrists verify Mars 2020 rover's perfect vision

MEDLI2 installation on Mars 2020 aeroshell begins

World first as kits designed to extract metals from the Moon and Mars blast off for space station tests

STELLAR CHEMISTRY
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

STELLAR CHEMISTRY
Arianespace launches INTELSAT 39 and EDRS-C

Companies partner to offer a complete solution for space missions as a service

Space data relay system shows its speed

Next satellite in the European Data Relay System is fuelled

STELLAR CHEMISTRY
Millennium Space Systems to test orbital debris solutions with TriSept, Rocket Lab and Tethers Unlimited

How roads can help cool sizzling cities

Could Mexico cactus solve world's plastics problem?

Recovering color images from scattered light

STELLAR CHEMISTRY
Dead planets can 'broadcast' for up to a billion years

Hordes of Earth's toughest creatures may now be living on Moon

Pre-life building blocks spontaneously align in evolutionary experiment

Shining starlight on the search for life

STELLAR CHEMISTRY
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.