. | . |
AI learns to model our universe by Staff Writers Kashiwa, Japan (SPX) Aug 30, 2019
Researchers have successfully created a model of the universe using artificial intelligence, reports a new study. Researchers seek to understand our universe by making model predictions to match observations. Historically, they have been able to model simple or highly simplified physical systems, jokingly dubbed the "spherical cows," with pencils and paper. Later, the arrival of computers enabled them to model complex phenomena with numerical simulations. For example, researchers have programmed supercomputers to simulate the motion of billions of particles through billions of years of cosmic time, a procedure known as the N-body simulations, in order to study how the universe evolved to what we observe today. "Now with machine learning, we have developed the first neural network model of the universe, and demonstrated there's a third route to making predictions, one that combines the merits of both analytic calculation and numerical simulation," said Yin Li, a postdoctoral researcher at the Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, and jointly the University of California, Berkeley. At the beginning of our universe, things were extremely uniform. As time went by, the denser parts grew denser and sparser parts became sparser due to gravity, eventually forming a foam-like structure known as the "cosmic web." To study this structure formation process, researchers have tried many methods, including analytic calculations and numerical simulations. Analytic methods are fast, but fail to produce accurate results for large density fluctuations. On the other hand, numerical (N-body) methods simulate structure formation accurately, but tracking gazillions of particles is costly, even on supercomputers. Thus, to model the universe, scientists often face the accuracy-versus-efficiency trade-off. However, the explosive growth of observational data in quality and quantity calls for methods that excel in both accuracy and efficiency. To tackle this challenge, a team of researchers from the US, Canada, and Japan, including Li, set their sights on machine learning, a cutting-edge approach to detecting patterns and making predictions. Just as machine learning can transform a young man's portrait into his older self, Li and colleagues asked whether it can also predict how universes evolve based on their early snapshots. They trained a convolutional neural network with simulation data of trillions of cubic light-years in volume, and built a deep learning model that was able to mimic the structure formation process. The new model is not only many times more accurate than the analytic methods, but is also much more efficient than the numerical simulations used for its training. "It has the strengths of both previous [analytic calculation and numerical simulation] methods," said Li. Li says the power of AI emulation will scale up in the future. N-body simulations are already heavily optimized, and as a first attempt, his team's AI model still has large room for improvement. Also, more complicated phenomena incur a larger cost on simulation, but not likely so on emulation. Li and his colleagues expect a bigger performance gain from their AI emulator when they move on to including other effects, such as hydrodynamics, into the simulations. "It won't be long before we can uncover the initial conditions of and the physics encoded in our universe along this path," he said.
Research Report: "Learning to Predict the Cosmological Structure Formation," Siyu He et al., 2019 June 24, Proceedings of the National Academy of Sciences of the United States of America
In a quantum future, which starship destroys the other? Hoboken NJ (SPX) Aug 23, 2019 Quantum mechanics boasts all sorts of strange features, one being quantum superposition - the peculiar circumstance in which particles seem to be in two or more places or states at once. Now, an international group of physicists led by Stevens Institute of Technology, University of Vienna and University of Queensland flip that description on its head, showing that particles are not the only objects that can exist in a state of superposition - so can time itself. "The sequence of events can become ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |