![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) Nov 20, 2015
If you live anywhere El Nino has important impacts, you've heard forecasters say this year's event looks just like the monster El Nino of 1997-98. NASA satellite images of the Pacific Ocean in November 1997 and November 2015 show almost identical, large pools of warm water in the eastern equatorial Pacific. The National Weather Service has forecast that impacts this winter will resemble those in 1997, when California and the South suffered floods, mudslides and tornadoes, while residents of the Upper Midwest saved $2 billion to $7 billion in heating costs throughout their unusually warm winter. When it comes to El Ninos, however, there are no identical twins. This year's event hasn't always resembled the '97 one. Satellite observations from early '97 and early '15 show conditions in the Pacific Ocean that were, well, oceans apart. In its "normal" state, the Pacific is warm on the western side and cooler in the east. That's what the ocean looked like in 1996 and early 1997. Conversely, over the past 18 months or so, satellite images have shown a large pool of warm water hovering around the equator in the central Pacific - neither west, as in a normal year, nor east, as in a typical El Nino. "That warm patch started last year and it never disappeared. It's very peculiar behavior," said Tong Lee, an oceanographer at NASA's Jet Propulsion Laboratory, Pasadena, California. In the first decade of the 2000s, scientists began noticing that warm pools were appearing more frequently in the central equatorial Pacific. Since they look like El Ninos but are in the wrong place, some began calling them "central Pacific El Ninos." Others use the name "El Nino Modoki," Japanese for (roughly) "almost but not quite an El Nino." "Whether we have [different] flavors of El Nino, central versus eastern Pacific El Ninos, or a continuum is an actively debated topic," said JPL's Michelle Gierach, who studies the ocean response to El Nino. However it's classified, the central Pacific phenomenon tends to have different global impacts than the classic El Nino variety. In the United States, a strong, classic El Nino usually heralds a warmer Northwest and colder Southeast. The central Pacific version is associated with a warmer Northeast and colder Southwest. But the central Pacific isn't the only part of the ocean that has been behaving oddly in the last few years. "Before the developing 2015 El Nino, there was prolonged anomalous warming off the West Coast of North America called the Blob," Gierach said. Named by Nick Bond at the University of Washington, Seattle, the Blob is the largest pool of warmer-than-normal water in the North Pacific Ocean in recorded history. It formed about two years ago near the Gulf of Alaska and grew to span the entire U.S. West Coast, merging with warm pools off Baja California and in the Bering Sea. "The occurrence of this phenomenon in association with El Nino is not normal, based upon our satellite record, and the combination of the two has greater potential to affect marine life." Wherever El Nino warms the ocean, it reduces the nutrients upwelled from the ocean depth. From satellites, this can be seen in declining concentrations of sea surface chlorophyll, a green pigment found in phytoplankton. These microscopic plants are the lowest level of the ocean food web. "Phytoplankton, like people, have environments that they favor," Gierach said. Just like any other plant, they like specific light conditions, temperatures and nutrients. When those conditions change, phytoplankton species change as well. That cascades up through the marine food chain. These changes in phytoplankton, fish and other marine life have already been observed in association with both the Blob and El Nino.
Predicting El Ninos and Their Impacts Since 1992, when the U.S./European Topex/Poseidon and Jason series of ocean altimetry satellites began providing comprehensive views of Pacific sea surface height (a measure of heat in the ocean), there have only been six El Ninos - not a large enough sample for scientists to develop reliable assumptions on their behavior. "The El Nino cycle is three to seven years," Lee pointed out. "If you predict it wrong, you will have to wait for years to try again. Only when we have decades of satellite data can we test our prediction skill." When it comes to forecasting the impacts of an El Nino, however, the picture is a bit different. "Forecasting the impacts for a small to medium El Nino is difficult to impossible," said JPL climatologist Bill Patzert. "They're not big enough to impact weather patterns across the planet. But when you have a super El Nino, like this year and 97-98, it's probably the most powerful tool long-range forecasters have."
What Do the Scientists Expect? Gierach has a wait-and-see attitude. "All bets are off," she said. "Ocean conditions before the 2015 El Nino make it unclear as to what impacts we can expect. I feel like this one is an entirely different entity." Patzert notes that what matters to anyone is not overall consequences but local ones. "From day to day, the real impacts of El Nino will be individual storms. At this point, there is a wide range of possibilities. Nobody is predicting a specific mudslide here or there. Weather always does surprise you."
Related Links El Nino 2015 - Ocean Surface Topography from Space El Nino, La Nina and an Ocean called Pacifica
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |