. 24/7 Space News .
Geologists Find A New Active Fault In Nepal

The new "thrust fault" is found in an area where there is a dramatic change in the structure of the landscape, and in a region where the rainfall and erosion rates are among the highest in the world.
Hanover NH (SPX) Apr 25, 2005
A Dartmouth researcher is part of a team that has discovered a new active "thrust fault" at the base of the Himalaya in Nepal.

This new fault likely accommodates some of the subterranean pressure caused by the continuing collision of the Indian subcontinent with Asia.

The study, titled "Active out-of-sequence thrust faulting in the central Nepalese Himalaya," will be published in the April 21 issue of the journal Nature.

"This work tackles one of the fundamental questions in my field," says Arjun Heimsath, Assistant Professor of Earth Sciences and an author on the paper.

"We are trying to determine whether climate is driving erosion, which may in turn impact tectonics, or whether tectonic forces drive erosion that subsequently influences climate. It's sometimes called the classic chicken-or-egg problem in geomorphology."

The researchers argue that this evidence quantifies a connection between erosion rates and tectonic forces, which might lead to a new understanding of how the growth of the Himalaya plays a role in global climate change.

The new fault is found in an area where there is a dramatic change in the structure of the landscape, and it's in a region where the rainfall and erosion rates are among the highest in the world.

Heimsath explains that as India continues to collide with Asia, the Himalayan Mountain Range grows a centimeter or more each year, and then the monsoons help bring about the erosion of the same mountains.

The new active fault is at the base of the Great Himalaya in Central Nepal, about 60 miles from Kathmandu.

Here, the landscape changes from low relief and gently sloping hills to steep, high mountains, and the researchers discovered that the erosion rates increase by a factor of four with the transition in topography.

"We used two different techniques of dating minerals in sediments to determine erosion rates spanning the last several thousand years as well as several million years," he says.

"There was corroboration over drastically different time scales of erosion rates from several watersheds, suggesting a close connection between erosion and tectonics."

Heimsath and colleagues speculate that there may be some sort of feedback mechanism between erosion and tectonic movement, which might help reduce the potential energy accumulated by the uplift of the Himalaya and the formation of the Tibetan plateau, a vast region where the mean elevation is over 16,000 feet.

"The incredible mass of this uplifted plateau is struggling for someplace to go, and it's possible that focused erosion processes, which remove material at a high rate along the base of the Himalaya, are enabling a reduction in this accumulated potential energy. It's a continent-sized physics problem," he says.

Heimsath's coauthors on this study are Cameron Wobus, Kelin Whipple and Kip Hodges, all in the Department of Earth, Atmospheric and Planetary Sciences at Massachusetts Institute of Technology. Wobus, a current PhD student, is a former graduate student at Dartmouth.

Related Links
Dartmouth College
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Quake Chaser Lazio�Sirad Now Aboard The ISS
Rome, Italy (SPX) Apr 17, 2005
The Lazio-Sirad device has now arrived at the ISS, ready to confirm whether particle fluxes in the Van Allen belts are accurate harbingers of earthquakes on Earth.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.