. 24/7 Space News .
Temperature Inside Collapsing Bubble Four Times That Of Sun

A cinematographic sequence of photos of the growth and implosive collapse of a single bubble (shown in blue) in sulfuric acid irradiated with high intensity ultrasound. The images are shown in false color. Photo by D. Flannigan and K. S. Suslick.
Champaign IL (SPX) Mar 03, 2005
Using a technique employed by astronomers to determine stellar surface temperatures, chemists at the University of Illinois at Urbana-Champaign have measured the temperature inside a single, acoustically driven collapsing bubble. Their results seem out of this world.

"When bubbles in a liquid get compressed, the insides get hot - very hot," said Ken Suslick, the Marvin T. Schmidt Professor of Chemistry at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology.

"Nobody has been able to measure the temperature inside a single collapsing bubble before. The temperature we measured - about 20,000 degrees Kelvin - is four times hotter than the surface of our sun."

This result, reported in the March 3 issue of the journal Nature by Suslick and graduate student David Flannigan, already has raised eyebrows. Their work is funded by the National Science Foundation and the Defense Advanced Research Projects Agency.

Sonoluminescence arises from acoustic cavitation - the formation, growth and implosion of small gas bubbles in a liquid blasted with sound waves above 18,000 cycles per second.

The collapse of these bubbles generates intense local heating. By looking at the spectra of light emitted from these hot spots, scientists can determine the temperature in the same manner that astronomers measure the temperatures of stars.

By substituting concentrated sulfuric acid for the water used in previous measurements, Suslick and Flannigan boosted the brilliance of the spectra nearly 3,000 times. The bubble can be seen glowing even in a brightly lit room. This allowed the researchers to measure the otherwise faint emission from a single bubble.

"It is not surprising that the temperature within a single bubble exceeds that found within a bubble trapped in a cloud," Suslick said. "In a cloud, the bubbles interact, so the collapse isn't as efficient as in an isolated bubble."

What is surprising, however, is the extremely high temperature the scientists measured. "At 20,000 degrees Kelvin, this emission originates from the plasma formed by collisions of atoms and molecules with high-energy particles," Suslick said.

"And, just as you can't see inside a star, we're only seeing emission from the surface of the optically opaque plasma." Plasmas are the ionized gases formed only at truly high energies.

The core of the collapsing bubble must be even hotter than the surface. In fact, the extreme conditions present during single-bubble compression have been predicted by others to produce neutrons from inertial confinement fusion.

"We used to talk about the bubble forming a hot spot in an otherwise cold liquid," Suslick said. "What we know now is that inside the bubble there is an even hotter spot, and outside of that core we are seeing emission from a plasma."

Related Links
University of Illinois at Urbana-Champaign
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Newly Seen Force May Help Gravity In Star Formation
Greenbelt MD (SPX) Mar 02, 2005
Scientists have pierced through a dusty stellar nursery to capture the earliest and most detailed view of a collapsing gas cloud turning into a star, analogous to a baby's first ultrasound.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.