![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Someday, large-scale solar power stations in space could beam electricity to the surface of the moon, the earth and other planets, decreasing our dependence on a dwindling fossil-fuel supply. Scientists at Rochester Institute of Technology are developing the next generation of solar cells, advancing the technology that could put a solar power system into earth's orbit. The National Science Foundation recently awarded a three-year, $200,000 grant to Ryne Raffaelle and Thomas Gennett, co-directors of RIT's NanoPower Research Laboratory, to develop nanomaterials--no bigger than a billionth of a meter--in support of NASA's space solar power program. The notion of space solar power--discounted as farfetched and silly after the energy crunch of the 1970s--never completely went away. Some scientists and other visionaries remained intrigued by the idea of orbiting, football-field sized "blankets" of solar cells that could generate tremendous amounts of power. NASA's program is revisiting the idea, pushing the latest technology as far as it will go. Raffaelle and Gennett are working with scientists from the Ohio Aerospace Institute and Phoenix Innovations Inc. to develop a new-and-improved solar cell that is light, thin and highly efficient. This solar cell, a thin-film device, will sandwich tiny granules of semi-conductor material, known as Quantum dots, and carbon nanotubes. "In order to put football-field sized arrays in space, they need to be lightweight and flexible, and able to withstand the rigors of space," Raffaelle says. "Today's technology isn't good enough, but with the theoretical possibilities offered by nanomaterials it could become a reality." Gennett adds: "The types of solar cells that we are working to develop are a clear departure from even the most advanced crystalline solar cells used in the space industry today. If we are successful it will result in a complete paradigm shift in space solar power generation." Related Links Rochester Institute of Technology SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() Microwaves derived from solar power and transmitted by orbiting satellites to electric power stations on Earth may someday enable U.S. energy self-sufficiency, but is this method safe for local plant life?
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |